1
|
Xalxo A, Jyoti Goswami U, Sarkar S, Kandasamy T, Mehta K, Ghosh SS, Bharatam PV, Khan AT. Synthesis of 3-sulfenylindole derivatives from 4-hydroxy-2H-chromene-2-thione and indole using oxidative cross-dehydrogenative coupling reaction and anti-proliferative activity study of some of their sulfone derivatives. Bioorg Chem 2023; 141:106900. [PMID: 37813073 DOI: 10.1016/j.bioorg.2023.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
The synthesis of hitherto unreported 3-sulfenylindole derivatives is achieved from 4-hydroxy-2H-chromene-2-thione (1) and indole (2) by employing an oxidative cross-dehydrogenative coupling reaction using a combination of 10 mol% of molecular iodine and 1 equivalent of TBHP in DMSO at room temperature. Then, the 3-sulfenylindole derivatives 3a, 3b, 3d, 3f, 3 h, and 3 k were converted into their corresponding sulfone derivatives because of lead likeness properties. Subsequently, a target prediction and docking study of six sulfone derivatives (5a-f) was performed, and four sulfones, namely 5a, 5d, 5e, and 5f, were selected for further in-vitro studies. The four sulfones mentioned above exhibited prominent anti-proliferative activity on breast cancer (MCF7) cell lines. In addition, this reaction was exergonic through quantum chemical analysis of the mechanistic steps. The salient features of this reaction are mild reaction conditions, good yields, and broad substrate scope.
Collapse
Affiliation(s)
- Anjela Xalxo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Ujjwal Jyoti Goswami
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Shilpi Sarkar
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Thirukumaran Kandasamy
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Kriti Mehta
- National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, 160062, Punjab
| | - Siddhartha S Ghosh
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Prasad V Bharatam
- National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, 160062, Punjab.
| | - Abu T Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
2
|
Sahoo AK, Rakshit A, Pan A, Dhara HN, Patel BK. Visible/solar-light-driven thiyl-radical-triggered synthesis of multi-substituted pyridines. Org Biomol Chem 2023; 21:1680-1691. [PMID: 36723155 DOI: 10.1039/d3ob00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A light-triggered synthesis of thio-functionalized pyridines is demonstrated using γ-ketodinitriles, thiols, and eosin Y as the photocatalyst. The reaction proceeds via the selective attack on one of the cyano groups by an in situ generated thiyl radical. The reaction also proceeds with nearly equal efficiency using direct sunlight. Large-scale synthesis and a few useful synthetic transformations of the substituted pyridines are also performed.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Akhmadiev N, Mescheryakova E, Khayrullina V, Khalilov L, Akhmetova V. DOS
strategy, crystal structure, and in silico evaluation of the anti‐inflammatory activity of hydroxysulfanylazole derivatives. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nail Akhmadiev
- Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences Ufa Russia
| | | | | | - Leonard Khalilov
- Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences Ufa Russia
| | - Vnira Akhmetova
- Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences Ufa Russia
| |
Collapse
|
4
|
Sahoo AK, Rakshit A, Dahiya A, Pan A, Patel BK. Visible-Light-Mediated Synthesis of Thio-Functionalized Pyrroles. Org Lett 2022; 24:1918-1923. [DOI: 10.1021/acs.orglett.2c00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
5
|
Electrochemical fluorosulfonylation of alkenes to access vicinal fluorinated sulfones derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Cui H, Niu C, Zhang C. Aerobic Oxidative Cascade Thiolation and Cyclization to Construct Indole-Fused Isoquinolin-6(5 H)-one Derivatives in EtOH. J Org Chem 2021; 86:15835-15844. [PMID: 34699212 DOI: 10.1021/acs.joc.1c02027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical method to construct sulfenylated indole-fused isoquinolin-6(5H)-one derivatives has been developed. Using eco-friendly ethanol as the solvent and air as the oxidant, this reaction could be compatible with sensitive molecular framework. The utility of the product was well illustrated by further transformations. Moreover, the reaction mechanism was investigated by control experiments.
Collapse
Affiliation(s)
- Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
7
|
Baeva LA, Gataullin RR. Reaction of 3-(Alkylsulfanylmethyl)pentane-2,4-diones and 4-(Alkylsulfanyl)-3-(alkylsulfanylmethyl)butan-2-ones with Phenylhydrazine in the Presence of Zinc Chloride. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021070174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Firoozi S, Hosseini-Sarvari M. Nanosized CdS as a Reusable Photocatalyst: The Study of Different Reaction Pathways between Tertiary Amines and Aryl Sulfonyl Chlorides through Visible-Light-Induced N-Dealkylation and C-H Activation Processes. J Org Chem 2021; 86:2117-2134. [PMID: 33464894 DOI: 10.1021/acs.joc.0c02263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been found that the final products of the reaction of sulfonyl chlorides and tertiary amines in the presence of cadmium sulfide nanoparticles under visible light irradiation are highly dependent on the applied reaction conditions. Interestingly, with the change of a reaction condition, different pathways were conducted (visible-light-induced N-dealkylation or sp3 and sp2 C-H activation) that lead to different products such as secondary amines and various sulfonyl compounds. Remarkably, all of these reactions were performed under visible light irradiation and an air atmosphere without any additive or oxidant in benign solvents or under solvent-free conditions. During this study, the CdS nanoparticles as affordable, heterogeneous, and recyclable photocatalysts were designed, successfully synthesized, and fully characterized and applied for these protocols. During these studies, intermediates resulting from the oxidation of tertiary amines are trapped during the photoinduced electron transfer (PET) process. The reaction was carried out efficiently with a variety of substrates to give the corresponding products at relatively short times in good to excellent yields in parallel with the use of the visible light irradiation as a renewable energy source. Most of these processes are novel or are superior in terms of cost-effectiveness, safety, and simplicity to published reports.
Collapse
Affiliation(s)
- Somayeh Firoozi
- Department of Chemistry, Shiraz University, Shiraz 7194684795, Islamic Republic of Iran
| | - Mona Hosseini-Sarvari
- Department of Chemistry, Shiraz University, Shiraz 7194684795, Islamic Republic of Iran
| |
Collapse
|
9
|
Yang PW, Liu XX, Li XQ, Wei MX. Transition metal-free and solvent-free calcium carbide promotes the formation of β-keto sulfoxide from acyl chloride and DMSO. Org Chem Front 2021. [DOI: 10.1039/d1qo00147g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A transition metal-free, solvent-free, cheap and readily available calcium carbide promoted one-pot reaction of acid chloride with dimethyl sulfoxide produced β-keto sulfoxide directly.
Collapse
Affiliation(s)
- Pei-Wen Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia Engineering Research Center for Natural Medicine
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Xin-Xin Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia Engineering Research Center for Natural Medicine
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Xue-Qiang Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia Engineering Research Center for Natural Medicine
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Meng-Xue Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia Engineering Research Center for Natural Medicine
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
| |
Collapse
|
10
|
Baeva LA, Nugumanov RM, Biktasheva LF, Safiullin RL. Condensation of Propan-2-one with Formaldehyde and Propane-2-thiol. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220040015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
One-pot efficient synthesis of β-aryl-β-sulfanyl ketones via a four-component reaction of alkyl halides, thiourea benzaldehydes and acetophenones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Wang M, Xie Z, Tang S, Chang EL, Tang Y, Guo Z, Cui Y, Wu B, Ye T, Chen Y. Reductase of Mutanobactin Synthetase Triggers Sequential C-C Macrocyclization, C-S Bond Formation, and C-C Bond Cleavage. Org Lett 2020; 22:960-964. [PMID: 31917593 DOI: 10.1021/acs.orglett.9b04501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutanobactins (MUBs) and their congeners that contain a macrocycle and/or a thiazepane ring are lipopeptides from Streptococcus mutans, a major causative agent of dental caries. Here we show that the C-terminal reductase domain of MubD releases the lipohexapeptide intermediates in an aldehyde form, which enables a spontaneous C-C macrocyclization. In the presence of a thiol group, the macrocyclized MUBs can further undergo spontaneous C-S bond formation and C-C bond cleavage to generate diverse MUB congeners.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhoujie Xie
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Shoubin Tang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China
| | - Ee Ling Chang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China
| | - Yue Tang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yinglu Cui
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Bian Wu
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
13
|
Mondal S, Mahato K, Arora N, Kankane D, Singh UP, Ali S, Khan AH, Ghosh SS, Khan AT. Newly synthesized 3-sulfenylindole derivatives from 4-hydroxydithiocoumarin using an oxidative cross dehydrogenative coupling reaction (OCDCR): potential lead molecules for antiproliferative activity. Org Biomol Chem 2020; 18:4104-4113. [DOI: 10.1039/d0ob00054j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of 3-sulfenyl indole derivatives is achieved through oxidative cross-dehydrogenative coupling reaction. A few such newly synthesized compounds have also exhibited anti-proliferative activityviareactive oxygen species mediated cell damage.
Collapse
Affiliation(s)
- Santa Mondal
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- 781039 India
| | - Karuna Mahato
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- 781039 India
| | - Neha Arora
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Dheerendra Kankane
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Umed Pratap Singh
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Saghir Ali
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- 781039 India
| | - Aftab Hossain Khan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- 781039 India
| | - Siddhartha S. Ghosh
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Abu T. Khan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- 781039 India
| |
Collapse
|
14
|
Baeva LA, Nugumanov RM, Biktasheva LF, Nugumanov TR, Fatykhov AA. Synthesis of Ethyl 2-[Alkyl(benzyl)sulfanylmethyl]-3-oxobutanoates and 3H-Pyrazol-3-ones Based Thereon. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019040043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kamble RB, Chavan SS, Suryavanshi G. An efficient heterogeneous copper fluorapatite (CuFAP)-catalysed oxidative synthesis of diaryl sulfone under mild ligand- and base-free conditions. NEW J CHEM 2019. [DOI: 10.1039/c8nj04845b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report an efficient method for the synthesis of diaryl sulfones using heterogeneous CuFAP-catalysed coupling of sodium salt of aryl sulfonic acid with phenyl boronic acid.
Collapse
Affiliation(s)
- Rohit B. Kamble
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune
- India
| | - Santosh S. Chavan
- Post Doctorate Fellow at Okinawa Institute of Science and Technology
- Japan
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune
- India
| |
Collapse
|
16
|
Bahrami K, Khodamorady M. Reusable BNPs-SiO2
@(CH2
)3
NHSO3
H-catalysed selective oxidation of sulfides to sulfones. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry; Razi University; Kermanshah 67149-67346 Iran
- Nanoscience and Nanotechnology Research Center (NNRC); Razi University; Kermanshah 67149-67346 Iran
| | - Minoo Khodamorady
- Department of Organic Chemistry, Faculty of Chemistry; Razi University; Kermanshah 67149-67346 Iran
| |
Collapse
|
17
|
Baeva LA, Nugumanov RM, Fatykhov AA, Lyapina NK. Synthesis of 4-[Alkylsulfanyl(sulfonyl)methyl]isoxazoles and -1H-pyrazoles from 3-[(Alkylsulfanyl)methyl]- pentane-2,4-diones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018030120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Isaac-Márquez AP, Talamás-Rohana P, Galindo-Sevilla N, Gaitan-Puch SE, Díaz-Díaz NA, Hernández-Ballina GA, Lezama-Dávila CM. Decanethiol functionalized silver nanoparticles are new powerful leishmanicidals in vitro. World J Microbiol Biotechnol 2018; 34:38. [PMID: 29460068 DOI: 10.1007/s11274-018-2420-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
We evaluated, for the first time, the leishmanicidal potential of decanethiol functionalized silver nanoparticles (AgNps-SCH) on promastigotes and amastigotes of different strains and species of Leishmania: L. mexicana and L. major isolated from different patients suffering from localized cutaneous leishmaniasis (CL) and L. mexicana isolated from a patient suffering from diffuse cutaneous leishmaniasis (DCL). We recorded the kinetics of promastigote growth by daily parasite counting for 5 days, promastigote mobility, parasite reproduction by CFSE staining's protocol and promastigote killing using the propidium iodide assay. We also recorded IC50's of promastigotes and amastigotes, therapeutic index, and cytotoxicity by co-culturing macrophages with AgNps-SCH or sodium stibogluconate (Sb) used as reference drug. We used Sb as a reference drug since it is used as the first line treatment for all different types of leishmaniasis. At concentrations 10,000 times lower than those used with Sb, AgNps-SCH had a remarkable leishmanicidal effect in all tested strains of parasites and there was no toxicity to J774A.1 macrophages since > 85% were viable at the concentrations used. Therapeutic index was about 20,000 fold greater than the corresponding one for Sb treated cells. AgNps-SCH inhibited > 80% promastigote proliferation in all tested parasites. These results demonstrate there is a high leishmanicidal potential of AgNps-SCH at concentrations of 0.04 µM. Although more studies are needed, including in vivo testing of AgNps-SCH against different types of leishmaniasis, they can be considered a potential new treatment alternative.
Collapse
Affiliation(s)
- A P Isaac-Márquez
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba de Regil s/n, Col. Lindavista, C.P. 24090, San Francisco de Campeche, Camp, Mexico.
| | - P Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, Ciudad de México, Mexico
| | - N Galindo-Sevilla
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Montes Urales 800, Colonia Lomas de Virreyes, C.P. 11000, Ciudad de México, Mexico
| | - S E Gaitan-Puch
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba de Regil s/n, Col. Lindavista, C.P. 24090, San Francisco de Campeche, Camp, Mexico
| | - N A Díaz-Díaz
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba de Regil s/n, Col. Lindavista, C.P. 24090, San Francisco de Campeche, Camp, Mexico
| | - G A Hernández-Ballina
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba de Regil s/n, Col. Lindavista, C.P. 24090, San Francisco de Campeche, Camp, Mexico
| | - C M Lezama-Dávila
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba de Regil s/n, Col. Lindavista, C.P. 24090, San Francisco de Campeche, Camp, Mexico.
| |
Collapse
|
19
|
Mahato K, Arora N, Ray Bagdi P, Gattu R, Ghosh SS, Khan AT. An oxidative cross-coupling reaction of 4-hydroxydithiocoumarin and amines/thiols using a combination of I2 and TBHP: access to lead molecules for biomedical applications. Chem Commun (Camb) 2018; 54:1513-1516. [DOI: 10.1039/c7cc08502h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmentally benign mild reaction conditions for the construction of new S–N/S–C/S–S bonds under metal free conditions.
Collapse
Affiliation(s)
- Karuna Mahato
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Neha Arora
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Prasanta Ray Bagdi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Radhakrishna Gattu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Abu T. Khan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| |
Collapse
|
20
|
Dar AA, Shadab M, Khan S, Ali N, Khan AT. One-Pot Synthesis and Evaluation of Antileishmanial Activities of Functionalized S-Alkyl/Aryl Benzothiazole-2-carbothioate Scaffold. J Org Chem 2016; 81:3149-60. [PMID: 26999637 DOI: 10.1021/acs.joc.6b00113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of hitherto unreported S-alkyl/aryl benzothiazole-2-carbothioate is reported from thiols, oxalyl chloride, and 2-aminothiophenols using 10 mol % n-tetrabutylammonium iodide (TBAI) as catalyst in acetonitrile through multicomponent reaction (MCR) strategy. The present protocol favored formation of benzothiazoles and thioesters via simultaneous formation of C-N and C-S bonds in good yields with a wide range of substrates. A few of the synthesized derivatives were evaluated for their antimicrobial activity against the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL). Further, these compounds displayed no toxicity toward macrophage RAW 264.7 cells and are therefore nontoxic and effective antileishmanial leads. In silico docking studies were performed to understand the possible binding site interaction with trypanothione reductase (TryR).
Collapse
Affiliation(s)
- Ajaz A Dar
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, India
| | - M Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology , 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Suman Khan
- Department of Chemistry, Pohang University of Science and Technology , Pohang, 37673, Republic of South Korea
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology , 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Abu T Khan
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, India
| |
Collapse
|