1
|
Balewski Ł, Gdaniec M, Hering A, Furman C, Ghinet A, Kokoszka J, Ordyszewska A, Kornicka A. Synthesis and Structure of Novel Hybrid Compounds Containing Phthalazin-1(2 H)-imine and 4,5-Dihydro-1 H-imidazole Cores and Their Sulfonyl Derivatives with Potential Biological Activities. Int J Mol Sci 2024; 25:11495. [PMID: 39519047 PMCID: PMC11546079 DOI: 10.3390/ijms252111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
A novel hybrid compound-2-(4,5-dihydro-1H-imidazol-2-yl)phthalazin-1(2H)-imine (5) was synthesized and converted into di-substituted sulfonamide derivatives 6a-o and phthalazine ring opening products-hydrazonomethylbenzonitriles 7a-m. The newly prepared compounds were characterized using elemental analyses, IR and NMR spectroscopy, as well as mass spectrometry. Single crystal X-ray diffraction data were collected for the representative compounds 5, 6c, 6e, 7g, and 7k. The antiproliferative activity of compound 5, sulfonyl derivatives 6a-o and benzonitriles 7a-m was evaluated on approximately sixty cell lines within nine tumor-type subpanels, including leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast. None of the tested compounds showed any activity against the cancer cell lines used. The antioxidant properties of all compounds were assessed using the DPPH, ABTS, and FRAP radical scavenging methods, as well as the β-carotene bleaching test. Antiradical tests revealed that among the investigated compounds, a moderate ABTS antiradical effect was observed for sulfonamide 6j (IC50 = 52.77 µg/mL). Benzonitrile 7i bearing two chlorine atoms on a phenyl ring system showed activity in a β-carotene bleaching test (IC50 = 86.21 µg/mL). Finally, the interaction AGE/RAGE in the presence of the selected phthalazinimines 6a, 6b, 6g, 6m, and hydrazonomethylbenzonitriles 7a, 7c-g, and 7i-k was determined by ELISA assay. A moderate inhibitory potency toward RAGE was found for hydrazonomethylbenzonitriles-7d with an electron-donating methoxy group (R = 3-CH3O-C6H4) and 7f, 7k with an electron-withdrawing substituent (7f, R = 2-Cl-C6H4; 7k, R = 4-NO2-C6H4).
Collapse
Affiliation(s)
- Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Christophe Furman
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France; (C.F.); (A.G.)
| | - Alina Ghinet
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France; (C.F.); (A.G.)
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
2
|
Tian Y, Sun H, Cui B, Han S, Wang T, Shi Y, Cao C. Ring-opening silylation of N-arylindoles via endocyclic C-N bond cleavage triggered by silylboranes. Chem Commun (Camb) 2024; 60:11980-11983. [PMID: 39350748 DOI: 10.1039/d4cc02998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The cleavage of heteroaromatic endocyclic carbon-heteroatom bonds to assemble C-Si bonds is scarce. Here, we demonstrate an unprecedented dearomatization silylation of N-arylindoles arising from reductive activation initiated by electron-rich silylboronic complexes to deliver silyl styrenes with perfect stereoselectivity.
Collapse
Affiliation(s)
- Ye Tian
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Hanying Sun
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Benqiang Cui
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Shaoyue Han
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Tianle Wang
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Yanhui Shi
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Changsheng Cao
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
3
|
Tokushige K, Kobori Y, Asai S, Abe T. Indoline hemiaminals: a platform for accessing anthranilic acid derivatives through oxidative deformylation. Org Biomol Chem 2024; 22:7343-7348. [PMID: 39189407 DOI: 10.1039/d4ob01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
2-Aminobenzoyl chlorides possess both a nucleophilic nitrogen atom and an electrophilic carbonyl group, and thus selective acylation of nucleophiles is challenging; self-dimerization and sluggish reactions occur. Herein, we introduce a new synthetic protocol using 2-aminobenzoyl surrogates, allowing concise entry to decorated 2-aminobenzoyl derivatives in the absence of transition metals, acid chlorides, and specific reagents.
Collapse
Affiliation(s)
- Keisuke Tokushige
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| | - Yuito Kobori
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| | - Shota Asai
- School of Pharmacy, Shujitsu University, 1-6-1, Nishigawara, Naka-ku, Okayama, 7038516, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| |
Collapse
|
4
|
Tokushige K, Abe T. Formal One Carbon Deletion of Indoline Hemiaminals under Tautomeric Control to Access 2-Aminobenzyl Compounds. J Org Chem 2024; 89:10349-10354. [PMID: 38949244 DOI: 10.1021/acs.joc.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Unprecedented tert-BuOK-mediated one carbon deletion of indoline hemiaminals has been achieved. This novel protocol provides an efficient synthetic tool for the construction of 2-aminobenzyl compounds with high chemoselectivity. In addition, functionalized 2-aminobenzyl compounds are difficult to make, for which few limited means of access currently exist. The key to success is the use of in situ generated Heyns rearrangement products (α-amino carbonyl compounds) as precursors for formal one carbon deletion.
Collapse
Affiliation(s)
- Keisuke Tokushige
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| |
Collapse
|
5
|
Tang S, Shen Q, He P, Li J, Yang J, Si X, Xia J, Han Y, Li Z, Liu C, Gui QW. Synthesis of esters from 2-phenylimidazo[1,2-a]pyridines using visible light. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Gulledge ZZ, Duda DP, Dixon DA, Carrick JD. Microwave-Assisted, Metal- and Azide-Free Synthesis of Functionalized Heteroaryl-1,2,3-triazoles via Oxidative Cyclization of N-Tosylhydrazones and Anilines. J Org Chem 2022; 87:12632-12643. [PMID: 36126149 DOI: 10.1021/acs.joc.2c01042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As the search for competent soft-Lewis basic complexants for separations continues to evolve toward identification of a chemoselective moiety for speciation of the minor actinides from the electronically similar lanthanides, synthetic methods must congruently evolve. Synthetic options to convergently construct unsymmetric heteroaryl donor complexants incorporating a 1,2,3-triazole from accessible starting materials for evaluation in separation assays necessitated the development of the described methodology. In this report, metal- and azide-free synthesis of diversely functionalized pyridyl-1,2,3-triazole derivatives facilitated by microwave irradiation was leveraged to prepare a novel class of tridentate ligands. The described work negates the incorporation of thermally sensitive and toxic organoazides by using N-tosylhydrazones and anilines as viable synthetic equivalents in an efficient 12 min reaction time. Adaptation to alternative synthons useful for drug discovery was also realized. Method discovery, optimization, N-tosylhydrazone and aniline substrate scope, as well as a preliminary mechanistic hypotheses supported by DFT calculations are reported herein.
Collapse
Affiliation(s)
- Zachary Z Gulledge
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Damian P Duda
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - David A Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| |
Collapse
|
7
|
Abe T, Yamashiro T, Shimizu K, Sawada D. Indole Editing Enabled by HFIP-Mediated Ring-Switch Reactions of 3-Amino-2-Hydroxyindolines. Chemistry 2022; 28:e202201113. [PMID: 35438809 DOI: 10.1002/chem.202201113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/26/2022]
Abstract
This work reports the novel reactivity of hemiaminal as a precursor for indole editing at the multi-site. The HFIP-promoted indole editing of indoline hemiaminals affords 2-arylindoles through a ring-switch sequence. The key to success of this transformation is to use a cyclic hemiaminal as an α-amino aldehyde surrogate under transient tautomeric control. This transformation features mild reaction conditions and good yields with broad functional group tolerance. The utility of this transformation is presented through the one-pot protocol and the synthesis of isocryptolepine.
Collapse
Affiliation(s)
- Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Kaho Shimizu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| |
Collapse
|
8
|
Huang Z, Wang R, Sheng T, Zhong X, Wang S, Zhu X, Yuan Q, Wei Y, Zhou S. Transformation of the sp 2 Carbanion to Carbene with Subsequent 1,1-Migratory Insertion and Nucleophilic Substitution in Rare-Earth Metal Chemistry. Inorg Chem 2021; 60:18843-18853. [PMID: 34846129 DOI: 10.1021/acs.inorgchem.1c02589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of Fischer-type electrophilic carbene chemistry with early transition metals has been a great challenge due to the fact that such metals in their high oxidation states lack the d electrons to stabilize the electrophilic carbene. Herein, we disclose the first experimental and theoretical findings of in situ transformation of an sp2 carbanion to a Fischer-type electrophilic carbene with rare-earth metals in their high oxidation state with a d0 electron via electron transfer. The carbene may undergo 1,1-migratory insertion into an adjacent RE-C(sp3) bond, and an unprecedented ring opening of the indole ring of the ligand occurs when the carbenes undergo nucleophilic substitution with a special organolithium reagent o-Me2NC6H4CH2Li. The key to success is the uniquely tailored novel ligand systems featuring a suitable conjugate building block (-C═C-C═N) bearing an sp2 carbanion connected to the rare-earth metal center.
Collapse
Affiliation(s)
- Zeming Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Ruru Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Tian Sheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Xiangyang Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China.,Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Yun Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| |
Collapse
|
9
|
Qin H, Yang Z, Zhang Z, Liu C, He W, Fang Z, Guo K. An Electrochemical Route for Special Oxidative Ring-Opening of Indoles. Chemistry 2021; 27:13024-13028. [PMID: 34184801 DOI: 10.1002/chem.202101527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/09/2022]
Abstract
A novel electrochemical protocol for the oxidative cleavage of indoles has been developed, which offers a simple way to access synthetically useful anthranilic acid derivatives. In undivided cells, a wide variety of indoles and alcohol compounds are examined to afford amide ester aromatics without using extra oxidants and stoichiometric metal catalysts, which avoids the formation of undesired by-products and exhibits high atom economy. The products we described in this perspective represent a synthetic intermediate in numerous drug molecules and industrial chemical reagents and remarkably show potential application in the future.
Collapse
Affiliation(s)
- Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Zhao Yang
- School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Zhen Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| |
Collapse
|
10
|
Kurma SH, Sridhar B, Bhimapaka CR. Direct Access for the Regio- and Stereoselective Synthesis of N-Alkenylpyrazoles and Chromenopyrazoles. J Org Chem 2021; 86:2271-2282. [PMID: 33465310 DOI: 10.1021/acs.joc.0c02421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A highly regio- and stereoselective method was developed for the preparation of N-alkenylpyrazoles and chromenopyrazoles by the reaction of N-tosylhydrazones and salicyl N-tosylhydrazones with alkynes under neat conditions in the presence of La(OTf)3. The present study was found to be efficient and convenient for direct access to N-alkenylpyrazoles and chromenopyrazoles through C-C, C-N, and C-O bond forming reactions. Structure assignment of N-alkenylpyrazole compound 5c was confirmed by X-ray analysis.
Collapse
|
11
|
Varun BV, Vaithegi K, Yi S, Park SB. Nature-inspired remodeling of (aza)indoles to meta-aminoaryl nicotinates for late-stage conjugation of vitamin B 3 to (hetero)arylamines. Nat Commun 2020; 11:6308. [PMID: 33298909 PMCID: PMC7726565 DOI: 10.1038/s41467-020-19610-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of numerous routes to substituted nicotinates based on the Bohlmann–Rahtz pyridine synthesis, the existing methods have several limitations, such as the inevitable ortho-substitutions and the inability to conjugate vitamin B3 to other pharmaceutical agents. Inspired by the biosynthesis of nicotinic acid (a form of vitamin B3) from tryptophan, we herein report the development of a strategy for the synthesis of meta-aminoaryl nicotinates from 3-formyl(aza)indoles. Our strategy is mechanistically different from the reported routes and involves the transformation of (aza)indole scaffolds into substituted meta-aminobiaryl scaffolds via Aldol-type addition and intramolecular cyclization followed by C–N bond cleavage and re-aromatization. Unlike previous synthetic routes, this biomimetic method utilizes propiolates as enamine precursors and thus allows access to ortho-unsubstituted nicotinates. In addition, the synthetic feasibility toward the halo-/boronic ester-substituted aminobiaryls clearly differentiates the present strategy from other cross-coupling strategies. Most importantly, our method enables the late-stage conjugation of bioactive (hetero)arylamines with nicotinates and nicotinamides and allows access to the previously unexplored chemical space for biomedical research. Vitamin B3 derivatives display a range of biological activities. Here, the authors report the synthesis of meta-aminoaryl nicotinates, derivatives of vitamin B3, and their late-stage conjugation with (hetero)arylamines, ultimately expanding the chemical space for biomedical research.
Collapse
Affiliation(s)
- Begur Vasanthkumar Varun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kannan Vaithegi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sihyeong Yi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Zhang Q, Tang M, Zhang S, Wei Z. Acid-Promoted [3 + 1 + 1] Cyclization of N-Tosylhydrazones and Isocyanides: A Method for the Preparation of 4,5-Diaminopyrazoles. Org Lett 2020; 22:5182-5186. [DOI: 10.1021/acs.orglett.0c01809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meng Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Siyu Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zeyang Wei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Wang CY, Han JB, Wang L, Tang XY. Lewis Acid Catalyzed [4 + 2] Cycloaddition of N-Tosylhydrazones with ortho-Quinone Methides. J Org Chem 2019; 84:14258-14269. [PMID: 31599153 DOI: 10.1021/acs.joc.9b02040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A formal [4 + 2] cycloaddition of N-tosylhydrazones with ortho-quinone methides was developed, affording the facile synthesis of diverse 1,3-oxazine derivatives under mild conditions. In this transformation, N-tosylhydrazones are used as a 1,2-dipole synthon under base-free conditions. Moreover, the substrate scope is broad, and the products are formed with high diastereoselectivities in most of the cases.
Collapse
Affiliation(s)
- Chun-Ying Wang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| | - Jia-Bin Han
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| | - Long Wang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| |
Collapse
|
14
|
Veerakanellore GB, Smith CM, Vasiliu M, Oliver AG, Dixon DA, Carrick JD. Synthesis of 1 H-Pyrazol-5-yl-pyridin-2-yl-[1,2,4]triazinyl Soft-Lewis Basic Complexants via Metal and Oxidant Free [3 + 2] Dipolar Cycloaddition of Terminal Ethynyl Pyridines with Tosylhydrazides. J Org Chem 2019; 84:14558-14570. [PMID: 31647644 DOI: 10.1021/acs.joc.9b02088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Soft-Lewis basic complexants that facilitate chemoselective separation of the minor actinides from the lanthanides are critical to the closure of the nuclear fuel cycle. Complexants that modulate covalent orbital interactions with relevant metals of interest can facilitate desired outcomes in liquid-liquid separation, allowing for further transmutative processes that decrease issues related with storage of spent nuclear fuel from energy and weapons production. Synthesis of previously unexplored scaffolds seeks to improve performance over benchmark complexants. In the current work, an intermolecular, thermally initiated, and DBU-assisted [3 + 2] cycloaddition of 3-(6-ethynyl-pyridin-2-yl)-5,6-diphenyl-[1,2,4]triazine dipolarophiles with structurally diverse 4-methylbenzenesulfono-hydrazides afforded 21 yet-to-be reported examples in 42-68% yield and modest regioselectivity for the desired regioisomer. Preparation of requisite starting materials, method definition, dipole and dipolarophile scope, ten-fold scale-up reaction, and downstream functional group interconversion are reported herein.
Collapse
Affiliation(s)
- Giri Babu Veerakanellore
- Department of Chemistry , Tennessee Technological University , Cookeville , Tennessee 38505-0001 , United States
| | - Caris M Smith
- Department of Chemistry and Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Allen G Oliver
- Department of Chemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - David A Dixon
- Department of Chemistry and Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Jesse D Carrick
- Department of Chemistry , Tennessee Technological University , Cookeville , Tennessee 38505-0001 , United States
| |
Collapse
|
15
|
Zhang G, Fan Q, Zhao Y, Ding C. Copper-Promoted Oxidative Intramolecular C-H Amination of Hydrazones to Synthesize 1H
-Indazoles and 1H
-Pyrazoles Using a Cleavable Directing Group. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Qiankun Fan
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Yiyong Zhao
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Chengrong Ding
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| |
Collapse
|
16
|
Zhang Q, Tang M. Regioselective Synthesis of Highly Functionalized Pyrazoles from N-Tosylhydrazones. Org Lett 2019; 21:1917-1920. [PMID: 30829036 DOI: 10.1021/acs.orglett.9b00561] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A regioselective synthesis of highly functionalized pyrazoles from N-tosylhydrazones was developed. The reaction was general for a wide range of substrates and demonstrated excellent tolerance to a variety of substituents, and the method has been successfully applied to the formal synthesis of ibrutinib.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Meng Tang
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , P.R. China
| |
Collapse
|