1
|
Alemu BK, Tommasi S, Hulin JA, Meyers J, Mangoni AA. Current knowledge on the mechanisms underpinning vasculogenic mimicry in triple negative breast cancer and the emerging role of nitric oxide. Biomed Pharmacother 2025; 186:118013. [PMID: 40147105 DOI: 10.1016/j.biopha.2025.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Vasculogenic mimicry (VM) is the process by which cancer cells form vascular-like channels to support their growth and dissemination. These channels lack endothelial cells and are instead lined by the tumour cells themselves. VM was first reported in uveal melanomas but has since been associated with other aggressive solid tumours, such as triple-negative breast cancer (TNBC). In TNBC patients, VM is associated with tumour aggressiveness, drug resistance, metastatic burden, and poor prognosis. The lack of effective targeted therapies for TNBC has stimulated research on the mechanisms underpinning VM in order to identify novel druggable targets. In recent years, studies have highlighted the role of nitric oxide (NO), the NO synthesis inhibitor, asymmetric dimethylarginine (ADMA), and dimethylarginine dimethylaminohydrolase 1 (DDAH1), the key enzyme responsible for ADMA metabolism, in regulating VM. Specifically, NO inhibition through downregulation of DDAH1 and consequent accumulation of ADMA appears to be a promising strategy to suppress VM in TNBC. This review discusses the current knowledge regarding the molecular pathways underpinning VM in TNBC, anti-VM therapies under investigation, and the emerging role of NO regulation in VM.
Collapse
Affiliation(s)
- Belete Kassa Alemu
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Injibara University, College of Medicine and Health Sciences, Department of Pharmacy, Injibara, Ethiopia
| | - Sara Tommasi
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Julie-Ann Hulin
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jai Meyers
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Arduino A Mangoni
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
2
|
Prosekina EA, Shapkina VA, Karpov AE, Fedorutseva EY, Artemyeva AS. [DDAH1 protein: biological functions, role in carcinogenesis processes]. Arkh Patol 2025; 87:60-67. [PMID: 39943731 DOI: 10.17116/patol20258701160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Dimethylarginine Dimethylaminohydrolase 1 (DDAH1) is an essential enzyme capable of degrading asymmetric dimethylarginine, which is an endogenous inhibitor of nitric oxide synthase. Increased expression of DDAH1 and subsequent increased NO production are associated with carcinogenesis. In particular, DDAH1 is involved in the creation of a vascular network by tumor cells, vasculogenic mimicry, which is closely associated with tumor progression and poor patient prognosis. This is the reason why DDAH1 may be a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- E A Prosekina
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - V A Shapkina
- St. Petersburg State University, St. Petersburg, Russia
| | - A E Karpov
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | | | - A S Artemyeva
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| |
Collapse
|
3
|
Shen W, Wei W, Wang S, Yang X, Wang R, Tian H. RNA-binding protein AZGP1 inhibits epithelial cell proliferation by regulating the genes of alternative splicing in COPD. Gene 2024; 927:148736. [PMID: 38950687 DOI: 10.1016/j.gene.2024.148736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is characterized by high morbidity, disability, and mortality rates worldwide. RNA-binding proteins (RBPs) might regulate genes involved in oxidative stress and inflammation in COPD patients. Single-cell transcriptome sequencing (scRNA-seq) offers an accurate tool for identifying intercellular heterogeneity and the diversity of immune cells. However, the role of RBPs in the regulation of various cells, especially AT2 cells, remains elusive. MATERIALS AND METHODS A scRNA-seq dataset (GSE173896) and a bulk RNA-seq dataset acquired from airway tissues (GSE124180) were employed for data mining. Next, RNA-seq analysis was performed in both COPD and control patients. Differentially expressed genes (DEGs) were identified using criteria of fold change (FC ≥ 1.5 or ≤ 1.5) and P value ≤ 0.05. Lastly, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and alternative splicing identification analyses were carried out. RESULTS RBP genes exhibited specific expression patterns across different cell groups and participated in cell proliferation and mitochondrial dysfunction in AT2 cells. As an RBP, AZGP1 expression was upregulated in both the scRNA-seq and RNA-seq datasets. It might potentially be a candidate immune biomarker that regulates COPD progression by modulating AT2 cell proliferation and adhesion by regulating the expression of SAMD5, DNER, DPYSL3, GBP5, GBP3, and KCNJ2. Moreover, AZGP1 regulated alternative splicing events in COPD, particularly DDAH1 and SFRP1, holding significant implications in COPD. CONCLUSION RBP gene AZGP1 inhibits epithelial cell proliferation by regulating genes participating in alternative splicing in COPD.
Collapse
Affiliation(s)
- Wen Shen
- General Medicine Department, The Second Affiliated Hospital of Kunming Medical University, China.
| | - Wei Wei
- General Medicine Department, The Second Affiliated Hospital of Kunming Medical University, China
| | - Shukun Wang
- General Medicine Department, The Second Affiliated Hospital of Kunming Medical University, China
| | - Xiaolei Yang
- General Medicine Department, The Second Affiliated Hospital of Kunming Medical University, China
| | - Ruili Wang
- General Medicine Department, The Second Affiliated Hospital of Kunming Medical University, China
| | - Hong Tian
- General Medicine Department, The Second Affiliated Hospital of Kunming Medical University, China
| |
Collapse
|
4
|
Bigiotti C, Bianconi E, Ruta L, Grottelli S, Coletti A, Dindo M, Carotti A, Cellini B, Macchiarulo A. Molecular Dynamics-Ensemble Docking and Biophysical Studies for Structure-Based Identification of Non-Amino Acidic Ligands of DDAH-1. J Chem Inf Model 2024; 64:6866-6879. [PMID: 39177258 DOI: 10.1021/acs.jcim.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) accounts for the catabolism of the endogenous inhibitors of nitric oxide (NO) synthases, namely, ADMA (Nω,Nω-dimethyl-l-arginine) and NMMA (Nω-monomethyl-l-arginine). Inhibition of DDAH-1 may prove a therapeutic benefit in diseases associated with elevated nitric oxide (NO) levels by providing a tissue-specific increase of ADMA and NMMA. In this work, we have used molecular dynamics to generate a pool of DDAH-1 conformations in the apo and holo forms. Ensemble docking has been instrumental in screening an in-house fragment-based library of 824 compounds. Resulting virtual hits have been validated for their binding activity to recombinant human DDAH-1 using microscale thermophoresis (MST). As a key result, three non-amino acidic ligands of DDAH-1 (VIS212, VIS268, VIS726) are identified with higher binding efficiency index than ADMA. Amid these compounds, purpurogallin (VIS726) proves a potent ligand of DDAH-1, showing a mixed behavior of enzymatic inhibition in a biochemical assay. This finding widens the panel of known molecular targets of purpurogallin and provides clues into the molecular mechanisms of its cellular NO inhibition activity as well as its anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Carlo Bigiotti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Luana Ruta
- Department of Experimental Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy
| | - Silvia Grottelli
- Department of Experimental Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Mirco Dindo
- Department of Experimental Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Barbara Cellini
- Department of Experimental Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
5
|
Nair PC, Mangoni AA, Rodionov RN. Redefining the biological and pathophysiological role of dimethylarginine dimethylaminohydrolase 2. Trends Mol Med 2024; 30:552-561. [PMID: 38553332 DOI: 10.1016/j.molmed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 06/15/2024]
Abstract
The enzyme dimethylarginine dimethylaminohydrolase (DDAH) 1 metabolizes asymmetric dimethylarginine (ADMA), a critical endogenous cardiovascular risk factor. In the past two decades, there has been significant controversy about whether DDAH2, the other DDAH isoform, is also able to directly metabolize ADMA. There has been evidence that DDAH2 regulates several critical processes involved in cardiovascular and immune homeostasis. However, the molecular mechanisms underpinning these effects are unclear. In this opinion, we discuss the previous and current knowledge of ADMA metabolism by DDAH in light of a recent consortium study, which convincingly demonstrated that DDAH2 is not capable of metabolizing ADMA, unlike DDAH1. Thus, further research in this field is needed to uncover the molecular mechanisms of DDAH2 and its role in various disorders.
Collapse
Affiliation(s)
- Pramod C Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia; Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA, Australia
| | - Roman N Rodionov
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Doman AJ, Perkins MV, Tommasi S, Mangoni AA, Nair PC. Recent advances in DDAH1 inhibitor design and discovery: insights from structure-activity relationships and X-ray crystal structures. RSC Adv 2024; 14:9619-9630. [PMID: 38525060 PMCID: PMC10958460 DOI: 10.1039/d3ra08210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Nitric oxide (NO) is an important signalling molecule which modulates several biological and pathological processes. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a key role indirectly regulating NO concentrations in the body. It has been shown that DDAH1 inhibition may be an effective therapeutic strategy in certain pathological states in which excessive NO is produced. In recent years, specific DDAH1 inhibitors have shown promise in suppressing abnormal neovascularization in cancer. However, the available DDAH1 inhibitors lack potency and selectivity and are mostly arginine-based. Further, these inhibitors display unfavourable pharmacokinetics and have not been tested in humans. Thus, the development of potent, selective, and chemically diverse DDAH1 inhibitors is essential. In this review, we examine the structure activity relationships (SARs) and X-ray crystal structures of known DDAH1 inhibitors. Then, we discuss current challenges in the design and development of novel DDAH1 inhibitors and provide future directions for developing potent and chemically diverse compounds.
Collapse
Affiliation(s)
- Anthony J Doman
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
| | - Michael V Perkins
- College of Science and Engineering, Flinders University Adelaide Australia
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
- Flinders Health and Medical Research Institute, Flinders University Adelaide Australia
| | - Pramod C Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
- Flinders Health and Medical Research Institute, Flinders University Adelaide Australia
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide Adelaide SA Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide Adelaide SA Australia
| |
Collapse
|
7
|
Asha Parveen SM, Kami Reddy KR, Ummanni R. Dimethylarginine Dimethylaminohydrolase - 1 expression is increased under tBHP-induced oxidative stress regulates nitric oxide production in PCa cells attenuates mitochondrial ROS-mediated apoptosis. Nitric Oxide 2023; 138-139:70-84. [PMID: 37423418 DOI: 10.1016/j.niox.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression is frequently elevated in different cancers including prostate cancer (PCa) and enhances nitric oxide (NO) production in tumor cells by metabolising endogenous nitric oxide synthase (NOS) inhibitors. DDAH1 protects the PCa cells from cell death and promotes survival. In this study, we have investigated the cytoprotective role of DDAH1 and determined the mechanism of DDAH1 in protecting the cells in tumor microenvironment. Proteomic analysis of PCa cells with stable overexpression of DDAH1 has identified that oxidative stress-related activity is altered. Oxidative stress promotes cancer cell proliferation, survival and causes chemoresistance. A known inducer of oxidative stress, tert-Butyl Hydroperoxide (tBHP) treatment to PCa cells led to elevated DDAH1 level that is actively involved in protecting the PCa cells from oxidative stress induced cell damage. In PC3-DDAH1- cells, tBHP treatment led to higher mROS levels indicating that the loss of DDAH1 increases the oxidative stress and eventually leads to cell death. Under oxidative stress, nuclear Nrf2 controlled by SIRT1 positively regulates DDAH1 expression in PC3 cells. In PC3-DDAH1+ cells, tBHP induced DNA damage is well tolerated compared to wild-type cells while PC3-DDAH1- became sensitive to tBHP. In PC3 cells, tBHPexposure has increased the production of NO and GSH which may be acting as an antioxidant defence to overcome oxidative stress. Furthermore, in tBHP treated PCa cells, DDAH1 is controlling the expression of Bcl2, active PARP and caspase 3. Taken together, these results confirm that DDAH1 is involved in the antioxidant defence system and promotes cell survival.
Collapse
Affiliation(s)
- Sakkarai Mohamed Asha Parveen
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karthik Reddy Kami Reddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Dunphy K, Dowling P. DIGE-Based Biomarker Discovery in Blood Cancers. Methods Mol Biol 2023; 2596:105-112. [PMID: 36378434 DOI: 10.1007/978-1-0716-2831-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer of blood or bone marrow-derived cells dysregulates normal hematopoiesis and accounts for over 6% of all cancer cases annually. Proteomic analyses of blood cancers have improved our understanding of disease mechanisms and identified numerous proteins of clinical relevance. For many years, gel-based proteomic studies have aided in the discovery of novel diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, in various diseases, including blood cancer. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) facilitates comparative proteomic research to identify differential protein expression in a simple and reproducible manner. The versatility of 2D-DIGE as a quantitative proteomic technique has provided insight into various aspects of blood cancer pathology, including disease development, prognostic subtypes, and drug resistance. The ability to couple 2D-DIGE with additional downstream mass spectrometry-based techniques yields comprehensive workflows capable of identifying proteins of biological and clinical significance. The application of 2D-DIGE in blood cancer research has significantly contributed to the increasingly important initiative of precision medicine. This chapter will focus on the influential role of 2D-DIGE as a tool in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Chen YL, Lowery AKT, Lin S, Walker AM, Chen KHE. Tumor cell-derived asymmetric dimethylarginine regulates macrophage functions and polarization. Cancer Cell Int 2022; 22:351. [PMID: 36376929 PMCID: PMC9664648 DOI: 10.1186/s12935-022-02769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA), which is significantly elevated in the plasma of cancer patients, is formed via intracellular recycling of methylated proteins and serves as a precursor for resynthesis of arginine. However, the cause of ADMA elevation in cancers and its impact on the regulation of tumor immunity is not known. METHODS Three mouse breast cell lines (normal breast epithelial HC11, breast cancer EMT6 and triple negative breast cancer 4T1) and their equivalent 3D stem cell culture were used to analyze the secretion of ADMA using ELISA and their responses to ADMA. Bone marrow-derived macrophages and/or RAW264.7 cells were used to determine the impact of increased extracellular ADMA on macrophage-tumor interactions. Gene/protein expression was analyzed through RNAseq, qPCR and flow cytometry. Protein functional analyses were conducted via fluorescent imaging (arginine uptake, tumor phagocytosis) and enzymatic assay (arginase activity). Cell viability was measured via MTS assay and/or direct cell counting using Countess III FL system. RESULTS For macrophages, ADMA impaired proliferation and phagocytosis of tumor cells, and even caused death in cultures incubated without arginine. ADMA also led to an unusual macrophage phenotype, with increased expression of arginase, cd163 and cd206 but decreased expression of il10 and dectin-1. In contrast to the severely negative impacts on macrophages, ADMA had relatively minor effects on proliferation and survival of mouse normal epithelial HC11 cells, mouse breast cancer EMT6 and 4T1 cells, but there was increased expression of the mesenchymal markers, vimentin and snail2, and decreased expression of the epithelial marker, mucin-1 in EMT6 cells. When tumor cells were co-cultured ex vivo with tumor antigen in vivo-primed splenocytes, the tumor cells secreted more ADMA and there were alterations in the tumor cell arginine metabolic landscape, including increased expression of genes involved in arginine uptake, metabolism and methylation, and decreased expression of a gene that is responsible for arginine demethylation. Additionally, interferon-gamma, a cytokine involved in immune challenge, increased secretion of ADMA in tumor cells, a process attenuated by an autophagy inhibitor. CONCLUSION Our results suggest initial immune attack promotes autophagy in tumor cells, which then secrete ADMA to manipulate macrophage polarization favoring tumor tolerance.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - AKaychia T Lowery
- Division of Mathematics and Sciences, Delta State University, 38733, Cleveland, MS, USA
| | - Samuel Lin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA
| | - Kuan-Hui E Chen
- Division of Mathematics and Sciences, Delta State University, 38733, Cleveland, MS, USA.
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA.
- Department of Biological Sciences, Texas Tech University, 79409, Lubbock, TX, USA.
| |
Collapse
|
10
|
Doman AJ, Tommasi S, Perkins MV, McKinnon RA, Mangoni AA, Nair PC. Chemical similarities and differences among inhibitors of nitric oxide synthase, arginase and dimethylarginine dimethylaminohydrolase-1: implications for the design of novel enzyme inhibitors modulating the nitric oxide pathway. Bioorg Med Chem 2022; 72:116970. [DOI: 10.1016/j.bmc.2022.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
|
11
|
Parveen SMA, Natani S, Sruthi K K, Khilar P, Ummanni R. HIF-1α and Nrf2 regulates hypoxia induced overexpression of DDAH1 through promoter activation in prostate cancer. Int J Biochem Cell Biol 2022; 147:106232. [PMID: 35644470 DOI: 10.1016/j.biocel.2022.106232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is overexpressed in prostate cancer (PCa) and promotes PCa progression in in vivo through the ADMA-NO pathway by degrading nitric oxide synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA) and monomethylamine arginine (L-NMMA). In this study, we investigated the molecular mechanism involved in the overexpression of DDAH1 in PCa and examined its potential role as a therapeutic target. We observed that DDAH1expression is elevated in PCa (PC3, LNCaP, and DU145) cell lines under hypoxia. ChIP and reporter assay results confirmed that DDAH1 expression is positively regulated by HIF-1α through directly binding to the hypoxia response elements (HRE) located within the promoter region between - 1242/- 1238 upstream of its transcription start site (TSS). Under hypoxia, HIF-1α is translocated into the nucleus and activates its target gene expression in PC3 cells. Interestingly, in the event of HIF-1α inhibition or siRNA-mediated knockdown, an alternative transcription factor Nrf2 promotes DDAH1 expression through antioxidant response elements (AREs) on its promoter. ChIP assay results showed that Nrf2 binds to AREs located between -1016 / -1008 bp from the TSS of DDAH1. Furthermore, knockdown of PCa therapeutic target HSP90, an essential co-factor for both HIF-1α and Nrf2 causes attenuation of hypoxia induced DDAH1 overexpression in PCa cells. These results demonstrate that hypoxia induced upregulation of DDAH1 expression is positively regulated by HIF-1α and Nrf2 in association with HSP90. Therefore, targeting tumor angiogenesis promoting DDAH1 along with standard androgen receptor (AR) targeted therapy may offer an effective strategy to prevent PCa progression.
Collapse
Affiliation(s)
- Sakkarai Mohamed Asha Parveen
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sirisha Natani
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sruthi K K
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Khilar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Hooglugt A, van der Stoel MM, Boon RA, Huveneers S. Endothelial YAP/TAZ Signaling in Angiogenesis and Tumor Vasculature. Front Oncol 2021; 10:612802. [PMID: 33614496 PMCID: PMC7890025 DOI: 10.3389/fonc.2020.612802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Solid tumors are dependent on vascularization for their growth. The hypoxic, stiff, and pro-angiogenic tumor microenvironment induces angiogenesis, giving rise to an immature, proliferative, and permeable vasculature. The tumor vessels promote tumor metastasis and complicate delivery of anti-cancer therapies. In many types of tumors, YAP/TAZ activation is correlated with increased levels of angiogenesis. In addition, endothelial YAP/TAZ activation is important for the formation of new blood and lymphatic vessels during development. Oncogenic activation of YAP/TAZ in tumor cell growth and invasion has been studied in great detail, however the role of YAP/TAZ within the tumor endothelium remains insufficiently understood, which complicates therapeutic strategies aimed at targeting YAP/TAZ in cancer. Here, we overview the upstream signals from the tumor microenvironment that control endothelial YAP/TAZ activation and explore the role of their downstream targets in driving tumor angiogenesis. We further discuss the potential for anti-cancer treatments and vascular normalization strategies to improve tumor therapies.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
| | - Miesje M. van der Stoel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
14
|
Hulin JA, Gubareva EA, Jarzebska N, Rodionov RN, Mangoni AA, Tommasi S. Inhibition of Dimethylarginine Dimethylaminohydrolase (DDAH) Enzymes as an Emerging Therapeutic Strategy to Target Angiogenesis and Vasculogenic Mimicry in Cancer. Front Oncol 2020; 9:1455. [PMID: 31993367 PMCID: PMC6962312 DOI: 10.3389/fonc.2019.01455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The small free radical gas nitric oxide (NO) plays a key role in various physiological and pathological processes through enhancement of endothelial cell survival and proliferation. In particular, NO has emerged as a molecule of interest in carcinogenesis and tumor progression due to its crucial role in various cancer-related events including cell invasion, metastasis, and angiogenesis. The dimethylarginine dimethylaminohydrolase (DDAH) family of enzymes metabolize the endogenous nitric oxide synthase (NOS) inhibitors, asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA), and are thus key for maintaining homeostatic control of NO. Dysregulation of the DDAH/ADMA/NO pathway resulting in increased local NO availability often promotes tumor growth, angiogenesis, and vasculogenic mimicry. Recent literature has demonstrated increased DDAH expression in tumors of different origins and has also suggested a potential ADMA-independent role for DDAH enzymes in addition to their well-studied ADMA-mediated influence on NO. Inhibition of DDAH expression and/or activity in cell culture models and in vivo studies has indicated the potential therapeutic benefit of this pathway through inhibition of both angiogenesis and vasculogenic mimicry, and strategies for manipulating DDAH function in cancer are currently being actively pursued by several research groups. This review will thus provide a timely discussion on the expression, regulation, and function of DDAH enzymes in regard to angiogenesis and vasculogenic mimicry, and will offer insight into the therapeutic potential of DDAH inhibition in cancer based on preclinical studies.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arduino A Mangoni
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
15
|
The Second Life of Methylarginines as Cardiovascular Targets. Int J Mol Sci 2019; 20:ijms20184592. [PMID: 31533264 PMCID: PMC6769906 DOI: 10.3390/ijms20184592] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023] Open
Abstract
Endogenous methylarginines were proposed as cardiovascular risk factors more than two decades ago, however, so far, this knowledge has not led to the development of novel therapeutic approaches. The initial studies were primarily focused on the endogenous inhibitors of nitric oxide synthases asymmetric dimethylarginine (ADMA) and monomethylarginine (MMA) and the main enzyme regulating their clearance dimethylarginine dimethylaminohydrolase 1 (DDAH1). To date, all the screens for DDAH1 activators performed with the purified recombinant DDAH1 enzyme have not yielded any promising hits, which is probably the main reason why interest towards this research field has started to fade. The relative contribution of the second DDAH isoenzyme DDAH2 towards ADMA and MMA clearance is still a matter of controversy. ADMA, MMA and symmetric dimethylarginine (SDMA) are also metabolized by alanine: glyoxylate aminotransferase 2 (AGXT2), however, in addition to methylarginines, this enzyme also has several cardiovascular protective substrates, so the net effect of possible therapeutic targeting of AGXT2 is currently unclear. Recent studies on regulation and functions of the enzymes metabolizing methylarginines have given a second life to this research direction. Our review discusses the latest discoveries and controversies in the field and proposes novel directions for targeting methylarginines in clinical settings.
Collapse
|