1
|
Sun J, Luo H, Wang J, Li H, Zheng R, Qiao D, Zhao J, Yu Y, Cao H. Pd-Catalyzed Aerobic C-H Carbonylative Esterification of Imidazo[1,2- a]pyridines with Alcohols as the Carbonyl Source. J Org Chem 2025; 90:4704-4713. [PMID: 40117328 DOI: 10.1021/acs.joc.5c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
A simple and practical method has been developed for the carbonylative esterification of imidazo[1,2-a]pyridines via C(sp2)-H bond functionalization using alkyl alcohols under mild reaction conditions. The carbonyl fragment is sourced from radical-mediated C-C cleavage of the alcohols, providing a green, safe, and economic alternative to traditional carbonyl sources like carbon monoxide. Through this strategy, a number of imidazo[1,2-a]pyridine-3-carboxylates were obtained from simple substrates by a single step.
Collapse
Affiliation(s)
- Jiapeng Sun
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hanxiao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Junyong Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hongliang Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Raorao Zheng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Dingru Qiao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiaji Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
2
|
Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2- a]pyridines. Org Biomol Chem 2023; 21:7267-7289. [PMID: 37655687 DOI: 10.1039/d3ob00849e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bhupesh Kumar Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Younis Rasool
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yashika Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Zhao M, Yang Z, Yang D. Recent Progress in Synthesis of Polysubstituted Imidazoles by Cyclization Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Hu YJ, Zhou Y, Gao JJ, Zhang H, Yang KR, Li JJ, Yan XX, Li YL, Zhu YP. I2-Mediated [3 + 2] annulation of methyl-azaarenes with alkyl 2-isocyanoacetates or amino acid ester hydrochlorides: selective synthesis of iodine-functionalized and non-iodine-functionalized fused imidazoles. Org Chem Front 2022. [DOI: 10.1039/d1qo01940f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An I2-mediated [3 + 2] annulation of methyl-azaarenes with alkyl 2-isocyanoacetates or amino acid ester hydrochlorides has been demonstrated. This strategy involves the C≡N cleavage of isocyanides and can selectively...
Collapse
|
5
|
Kurteva V. Recent Progress in Metal-Free Direct Synthesis of Imidazo[1,2- a]pyridines. ACS OMEGA 2021; 6:35173-35185. [PMID: 34984250 PMCID: PMC8717391 DOI: 10.1021/acsomega.1c03476] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
This Mini-Review highlights the most effective protocols for metal-free direct synthesis of imidazo[1,2-a]pyridines, crucial target products and key intermediates, developed in the past decade. The emphases is given on the ecological impact of the methods and on the mechanistic aspects as well. The procedures efficiently applied in the preparation of important drugs and promising drug candidates are also underlined.
Collapse
Affiliation(s)
- Vanya Kurteva
- Institute of Organic Chemistry
with Centre of Phytochemistry, Bulgarian
Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Kushch SO, Goryaeva MV, Surnina EA, Burgart YV, Ezhikova MA, Kodess MI, Slepukhin PA, Saloutin VI. Multicomponent Domino Reactions for the Synthesis of Variable Hydrogenated Imidazo[1,2‐
a
]pyridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Svetlana O. Kushch
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Marina V. Goryaeva
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Elena A. Surnina
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Marina A. Ezhikova
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Mikhail I. Kodess
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Pavel A. Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| |
Collapse
|
7
|
Ghosh S, Laru S, Hajra A. Ortho C-H Functionalization of 2-Arylimidazo[1,2-a]pyridines. CHEM REC 2021; 22:e202100240. [PMID: 34757691 DOI: 10.1002/tcr.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022]
Abstract
C-H activation and functionalization is quite promising in recent days as the strategy offers a go-to general method for different bond formations and hence grants synthetic versatility. At the same time, imidazopyridine, a fused bicycle of imidazole moiety with pyridine ring, has a profound impact due to its ubiquitous and prodigious application in medicinal as well as material chemistry. The presence of N-1 atom in 2-arylImidazo[1,2-a]pyridine facilitates the coordination with metal catalysts leading to the formation of ortho-substituted products. This review summarizes all the articles on ortho C-H functionalization of 2-arylImidazo[1,2-a]pyridines published till August 2021.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
8
|
Das D, Bhutia ZT, Panjikar PC, Chatterjee A, Banerjee M. A simple and efficient route to 2‐arylimidazo[1,2‐a]pyridines and zolimidine using automated grindstone chemistry. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dharmendra Das
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Zigmee T. Bhutia
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Padmini C. Panjikar
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
- Pravatibai Chowgule College of Arts and Science (Autonomus) Margao Goa India
| | - Amrita Chatterjee
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Mainak Banerjee
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| |
Collapse
|
9
|
Bhutia Z, Panjikar PC, Iyer S, Chatterjee A, Banerjee M. Iodine Promoted Efficient Synthesis of 2-Arylimidazo[1,2- a]pyridines in Aqueous Media: A Comparative Study between Micellar Catalysis and an "On-Water" Platform. ACS OMEGA 2020; 5:13333-13343. [PMID: 32548520 PMCID: PMC7288711 DOI: 10.1021/acsomega.0c01478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/12/2020] [Indexed: 05/12/2023]
Abstract
In a new and environmentally sustainable approach, a series of 2-arylimidazo[1,2-a]pyridine derivatives were synthesized in aqueous media in the presence of iodine as a catalyst. The reaction proceeded by condensation of various aryl methyl ketones with 2-aminopyridines to afford 2-arylimidazo[1,2-a]pyridines in good overall yields. Although several of the reactions were efficiently performed "on water", the addition of a surfactant, namely, sodium dodecyl sulphate , was found effective in terms of substrate scope and yield enhancement. Both methods were successfully used for the gram-scale synthesis of a marketed drug, zolimidine. The simple experimental setup, water as "green" media, and inexpensive catalyst are some of the merits of this protocol.
Collapse
Affiliation(s)
- Zigmee
T. Bhutia
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
| | - Padmini C. Panjikar
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
- Parvatibai
Chowgule College of Arts & Science (Autonomous), Margao 403602, Goa, India
| | - Shruti Iyer
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
| | - Amrita Chatterjee
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
- . Phone: +91-832-2580-320. Fax: +91-832-255-7031
| | - Mainak Banerjee
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
- . Phone: +91-832-2580-347. Fax: +91-832-255-7031
| |
Collapse
|
10
|
Vereshchagin AN, Karpenko KA, Elinson MN, Minaeva AP, Goloveshkin AS, Hansford KA, Egorov MP. One-pot five-component high diastereoselective synthesis of polysubstituted 2-piperidinones from aromatic aldehydes, nitriles, dialkyl malonates and ammonium acetate. Mol Divers 2019; 24:1327-1342. [PMID: 31646447 DOI: 10.1007/s11030-019-09997-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
A novel five-component diastereoselective synthesis of polysubstituted 2-piperidinones is reported. The Knoevenagel condensation-Michael addition-Mannich cascade of two equivalents of aromatic aldehydes, nitriles, dialkyl malonates and ammonium acetate or aqueous ammonia in alcohols provides convenient access to alkyl (3SR,4RS,6SR)-5,5-dicyano-2-oxo-4,6-diarylpiperidine-3-carboxylates with three stereocenters in 52-90% or dialkyl (2SR,3RS,4RS,5SR)-2,4-diaryl-3-cyano-6-oxopiperidine-3,5-dicarboxylates with four stereocenters in 38-88%. The formation of products was highly stereoselective, with only one diastereomer formed. Ammonium acetate or aqueous ammonia plays a role both as a catalyst and as a nitrogen source. 2,4,6-triaryl-3,3,5,5-tetracyanopiperidines were obtained as a side products in the reactions with nitro-substituted aldehydes or with ethyl and n-propyl cyanoacetates. A series of 14 2-piperidinones and piperidines was assessed for antimicrobial activity against a panel of five bacteria and two fungi; no significant activity was observed. Two side piperidines with nitro substituents in aromatic ring possess bacteriostatic action against S. aureus ATCC 43300 and A. baumannii ATCC 19606 at 32 ug/mL.
Collapse
Affiliation(s)
- Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia, 119991.
| | - Kirill A Karpenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia, 119991
| | - Michail N Elinson
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia, 119991
| | - Alexandra P Minaeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia, 119991.,D. I Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow, Russia, 125047
| | - Alexander S Goloveshkin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Vaviliva str., 28, Moscow, Russia, 119991
| | - Karl A Hansford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mikhail P Egorov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia, 119991
| |
Collapse
|
11
|
Highly diastereoselective four-component synthesis of polysubstituted 2-piperidinones with three and four stereogenic centers. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|