1
|
Zare M, Colomina Alfaro L, Bandiera A, Mutlu EC, Grossin D, Albericio F, Kuehne SA, Ahmed Z, Stamboulis A. Immobilization of KR-12 on a Titanium Alloy Surface Using Linking Arms Improves Antimicrobial Activity and Supports Osteoblast Cytocompatibility. ACS APPLIED BIO MATERIALS 2025; 8:2899-2915. [PMID: 40152675 PMCID: PMC12015957 DOI: 10.1021/acsabm.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Implant-associated infections pose significant challenges due to bacterial resistance to antibiotics. Recent research highlights the potential of immobilizing antimicrobial peptides (AMPs) onto implants as an alternative to conventional antibiotics for the prevention of bacterial infection. While various AMP immobilization methodologies have been investigated, they lack responsiveness to biological cues. This study proposes an enzyme-responsive antimicrobial coating for orthopedic devices using KR-12, an AMP derived from Cathelicidin LL-37, coupled with the Human Elastin-Like Polypeptide (HELP) as a biomimetic and stimuli-responsive linker, while mimicking the extracellular matrix (ECM). During implantation, these customized interfaces encounter the innate immune response triggering elastase release, which degrades HELP biopolymers, enabling the controlled release of KR-12. After coupling KR-12 with HELP to titanium surfaces, the antimicrobial activity against four pathogenic bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa) was assessed, revealing an inhibition ratio of bacterial adhesion and colonization exceeding 92% for all tested strains, compared with surfaces functionalized with KR-12 only. It is thought that the enhanced antimicrobial activity was due to the improved mobility of KR-12 when coupled with HELP. Furthermore, the prepared coatings boosted the adhesion and proliferation of human osteoblasts, confirming the cytocompatibility. These findings suggest the potential for smart coatings that combine the antimicrobial functions of AMPs with HELP's biological properties for use in a variety of settings, including medical devices.
Collapse
Affiliation(s)
- Mohadeseh Zare
- Biomaterials
Research Group, School of Metallurgy and Materials, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.
| | - Laura Colomina Alfaro
- Department
of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - Antonella Bandiera
- Department
of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - Esra Cansever Mutlu
- Biomaterials
Research Group, School of Metallurgy and Materials, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.
| | - David Grossin
- CIRIMAT,
Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, 31030 Toulouse, Cedex 4, France
| | - Fernando Albericio
- School
of Chemistry and Physics, University of
KwaZulu-Natal, Durban 4000, South Africa
| | - Sarah A. Kuehne
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, U.K.
| | - Zubair Ahmed
- Neuroscience
and Ophthalmology, Department of Inflammation and Ageing, School of
Infection, Inflammation and Ageing, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Artemis Stamboulis
- Biomaterials
Research Group, School of Metallurgy and Materials, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.
| |
Collapse
|
2
|
Al Musaimi O, Tomkins J, Barry SM, Basso A, Kou X, Zhang C, Serban S. Towards green, scalable peptide synthesis: leveraging DEG-crosslinked polystyrene resins to overcome hydrophobicity challenges. RSC Adv 2024; 14:40255-40266. [PMID: 39717810 PMCID: PMC11664329 DOI: 10.1039/d4ra07484j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
Diethylene glycol dimethacrylate (DEG)-crosslinked polystyrene (PS) resin offers a promising alternative to traditional divinyl benzene (DVB)-PS resin for solid-phase peptide synthesis (SPPS), particularly for challenging sequences with hydrophobic or bulky amino acids. DEG-PS resin's reduced hydrophobicity and enhanced flexibility improve synthesis efficiency, yielding peptides up to 28 residues with higher purities and yields compared to DVB-PS. In various syntheses, DEG-PS outperformed DVB-PS resin, with higher purities and yields for challenging peptides such as ABC analogue (73.2%, 58.3% vs. 72.5%, 46.3%) and Thymosin (58.4%, 48.6% vs. 54.0%, 39.2%). In addition, DEG-PS resin effectively suppressed common side reactions, such as dipeptide formation, typically encountered with Wang PS-based resins. Incorporating green chemistry principles, DEG-PS enabled the synthesis of complex peptides with satisfactory results using environmentally friendly solvents and reagents. Three challenging peptides; β (34-42), Jung and Redemann (JR), and ABRF 1992 - were synthesized on DEG-PS resin, achieving purities of 41.4%, 41.0%, and 68.0%, and yields of 50.5%, 52.6%, and 56.2%, respectively. These findings highlight DEG-PS resin's advantages for classical, green, and automated SPPS, offering superior performance and scalability for industrial applications.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Joshua Tomkins
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Sarah M Barry
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Alessandra Basso
- Life Science Division, Sunresin New Materials Co. Ltd. 710076 Xi'an China
| | - Xiaokang Kou
- Life Science Division, Sunresin New Materials Co. Ltd. 710076 Xi'an China
| | - Cheng Zhang
- Life Science Division, Sunresin New Materials Co. Ltd. 710076 Xi'an China
| | - Simona Serban
- Life Science Division, Sunresin New Materials Co. Ltd. 710076 Xi'an China
| |
Collapse
|
3
|
Wang S, Allmendinger L, Huc I. Abiotic Foldamer Quaternary Structures. Angew Chem Int Ed Engl 2024; 63:e202413252. [PMID: 39230977 DOI: 10.1002/anie.202413252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Abiotic aromatic foldamer sequences have been previously shown to fold in helix-turn-helix motifs in organic solvents. Using simple computational tools, a new helix-turn-helix motif was designed that bears additional hydrogen bond donor OH groups to promote its aggregation into a genuine, trimeric, abiotic quaternary structure. This sequence was synthesized and its self-assembly in solution was investigated by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Molecular Dynamics (MD) simulations. The existence of two stable discrete aggregates was evidenced, one assigned to the initially designed trimer, the other to a dimer including multiple water molecules. The two species may be quantitatively interconverted upon changing the water content of the solution or the temperature. These results represent important steps in the design of protein-like abiotic architectures.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
4
|
Darling WTP, Wieske LHE, Cook DT, Aliev AE, Caron L, Humphrys EJ, Figueiredo AM, Hansen DF, Erdélyi M, Tabor AB. The Influence of Disulfide, Thioacetal and Lanthionine-Bridges on the Conformation of a Macrocyclic Peptide. Chemistry 2024; 30:e202401654. [PMID: 38953277 DOI: 10.1002/chem.202401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cyclisation of peptides by forming thioether (lanthionine), disulfide (cystine) or methylene thioacetal bridges between side chains is established as an important tool to stabilise a given structure, enhance metabolic stability and optimise both potency and selectivity. However, a systematic comparative study of the effects of differing bridging modalities on peptide conformation has not previously been carried out. In this paper, we have used the NMR deconvolution algorithm, NAMFIS, to determine the conformational ensembles, in aqueous solution, of three cyclic analogues of angiotensin(1-7), incorporating either disulfide, or non-reducible thioether or methylene thioacetal bridges. We demonstrate that the major solution conformations are conserved between the different bridged peptides, but the distribution of conformations differs appreciably. This suggests that subtle differences in ring size and bridging structure can be exploited to fine-tune the conformational properties of cyclic peptides, which may modulate their bioactivities.
Collapse
Affiliation(s)
- William T P Darling
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Lianne H E Wieske
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Declan T Cook
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Abil E Aliev
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Laurent Caron
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Emily J Humphrys
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Angelo Miguel Figueiredo
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Máté Erdélyi
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
5
|
Wang S, Wicher B, Douat C, Maurizot V, Huc I. Domain Swapping in Abiotic Foldamers. Angew Chem Int Ed Engl 2024; 63:e202405091. [PMID: 38661252 DOI: 10.1002/anie.202405091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Foldamer sequences that adopt tertiary helix-turn-helix folds mediated by helix-helix hydrogen bonding in organic solvents have been previously reported. In an attempt to create genuine abiotic quaternary structures, i.e. assemblies of tertiary structures, new sequences were prepared that possess additional hydrogen bond donors at positions that may promote an association between the tertiary folds. However, a solid state structure and extensive solution state investigations by Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) show that, instead of forming a quaternary structure, the tertiary folds assemble into stable domain-swapped dimer motifs. Domain swapping entails a complete reorganization of the arrays of hydrogen bonds and changes in relative helix orientation and handedness that can all be rationalized.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806, Poznan, Poland
| | - Céline Douat
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2, Rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
6
|
Costa NS, dos Anjos LR, de Souza JV, Brasil MCDA, Moreira VP, Graminha MAS, Lubec G, Gonzalez ERP, Cilli EM. Development of New Leishmanicidal Compounds via Bioconjugation of Antimicrobial Peptides and Antileishmanial Guanidines. ACS OMEGA 2023; 8:34008-34016. [PMID: 37744786 PMCID: PMC10515597 DOI: 10.1021/acsomega.3c04878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Leishmaniasis refers to a collection of diseases caused by protozoa from the Leishmania genus. These diseases, along with other parasitic afflictions, pose a significant public health issue, particularly given the escalating number of at-risk patients. This group includes immunocompromised individuals and those residing in impoverished conditions. The treatment of leishmaniasis is crucial, particularly in light of the mortality rate associated with nontreatment, which stands at 20-30,000 deaths per year globally. However, the therapeutic options currently available are limited, often ineffective, and potentially toxic. Consequently, the pursuit of new therapeutic alternatives is warranted. This study aims to design, synthesize, and evaluate the leishmanicidal activity of antimicrobial peptides functionalized with guanidine compounds and identify those with enhanced potency and selectivity against the parasite. Accordingly, three bioconjugates were obtained by using the solid-phase peptide synthesis protocol. Each proved to be more potent against intracellular amastigotes than their respective peptide or guanidine compounds alone and demonstrated higher selectivity to the parasites than to the host cells. Thus, the conjugation strategy employed with these compounds effectively contributes to the development of new molecules with leishmanicidal activity.
Collapse
Affiliation(s)
- Natalia
C. S. Costa
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Luana Ribeiro dos Anjos
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - João Victor
Marcelino de Souza
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | | | - Vitor Partite Moreira
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - Marcia A. S. Graminha
- School
of Pharmaceutical Sciences, São Paulo
State University (UNESP), 14800-903 Araraquara, São
Paulo, Brazil
| | - Gert Lubec
- Department
of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Eduardo Rene P. Gonzalez
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - Eduardo Maffud Cilli
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
7
|
Kremsmayr T, Aljnabi A, Blanco-Canosa JB, Tran HNT, Emidio NB, Muttenthaler M. On the Utility of Chemical Strategies to Improve Peptide Gut Stability. J Med Chem 2022; 65:6191-6206. [PMID: 35420805 PMCID: PMC9059125 DOI: 10.1021/acs.jmedchem.2c00094] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Inherent susceptibility
of peptides to enzymatic degradation in
the gastrointestinal tract is a key bottleneck in oral peptide drug
development. Here, we present a systematic analysis of (i) the gut
stability of disulfide-rich peptide scaffolds, orally administered
peptide therapeutics, and well-known neuropeptides and (ii) medicinal
chemistry strategies to improve peptide gut stability. Among a broad
range of studied peptides, cyclotides were the only scaffold class
to resist gastrointestinal degradation, even when grafted with non-native
sequences. Backbone cyclization, a frequently applied strategy, failed
to improve stability in intestinal fluid, but several site-specific
alterations proved efficient. This work furthermore highlights the
importance of standardized gut stability test conditions and suggests
defined protocols to facilitate cross-study comparison. Together,
our results provide a comparative overview and framework for the chemical
engineering of gut-stable peptides, which should be valuable for the
development of orally administered peptide therapeutics and molecular
probes targeting receptors within the gastrointestinal tract.
Collapse
Affiliation(s)
- Thomas Kremsmayr
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria
| | - Aws Aljnabi
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
8
|
ACAR T, UÇAR B. Angiotensin(1-7)-Stearic Acid Conjugate: Synthesis and Characterization. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1032642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Mácha H, Kořínek M, Drož L, Nesměrák K. Determination of 9-fluorenylmethoxycarbonyl (Fmoc) resin loading in solid‐phase synthesis by RP-HPLC internal standard method. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
de la Torre BG, Ramkisson S, Albericio F, Lopez J. Refractive Index: The Ultimate Tool for Real-Time Monitoring of Solid-Phase Peptide Synthesis. Greening the Process. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Shaveer Ramkisson
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - John Lopez
- Novartis Pharma AG, Lichtstrasse 35, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Bakhatan Y, Alshanski I, Grunhaus D, Hurevich M. The breaking beads approach for photocleavage from solid support. Org Biomol Chem 2020; 18:4183-4188. [PMID: 32441723 DOI: 10.1039/d0ob00821d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocleavage from polystyrene beads is a pivotal reaction for solid phase synthesis that relies on photolabile linkers. Photocleavage from intact porous polystyrene beads is not optimal because light cannot penetrate into the beads and the surface area exposed to irradiation is limited. Thus, hazardous, technically challenging and expensive setups are used for photocleavage from intact beads. We developed a new concept in which grinding the beads during or prior to irradiation is employed as an essential part of the photocleavage process. By grinding the beads we are exposing more surface area to the light source, hence, photocleavage can be performed even using a simple benchtop LED setup. This approach proved very efficient for photocleavage of various model compounds including fully protected oligosaccharides.
Collapse
Affiliation(s)
- Yasmeen Bakhatan
- Institute of Chemistry; Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Israel Alshanski
- Institute of Chemistry; Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Dana Grunhaus
- Institute of Chemistry; Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Mattan Hurevich
- Institute of Chemistry; Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|