1
|
Mullis AS, Broderick SR, Phadke KS, Peroutka-Bigus N, Bellaire BH, Rajan K, Narasimhan B. Data analytics-guided rational design of antimicrobial nanomedicines against opportunistic, resistant pathogens. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102647. [PMID: 36581257 DOI: 10.1016/j.nano.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/27/2022]
Abstract
Nanoparticle carriers can improve antibiotic efficacy by altering drug biodistribution. However, traditional screening is impracticable due to a massive dataspace. A hybrid informatics approach was developed to identify polymer, antibiotic, and particle determinants of antimicrobial nanomedicine activity against Burkholderia cepacia, and to model nanomedicine performance. Polymer glass transition temperature, drug octanol-water partition coefficient, strongest acid dissociation constant, physiological charge, particle diameter, count and mass mean polydispersity index, zeta potential, fraction drug released at 2 h, and fraction release slope at 2 h were highly correlated with antimicrobial performance. Graph analysis provided dimensionality reduction while preserving nonlinear descriptor-property relationships, enabling accurate modeling of nanomedicine performance. The model successfully predicted particle performance in holdout validation, with moderate accuracy at rank-ordering. This data analytics-guided approach provides an important step toward the development of a rational design framework for antimicrobial nanomedicines against resistant infections by selecting appropriate carriers and payloads for improved potency.
Collapse
Affiliation(s)
- Adam S Mullis
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| | - Scott R Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, United States.
| | - Kruttika S Phadke
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, United States.
| | - Nathan Peroutka-Bigus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, United States.
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, United States; Nanovaccine Institute, Iowa State University, Ames, IA 50011, United States.
| | - Krishna Rajan
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, United States; Nanovaccine Institute, Iowa State University, Ames, IA 50011, United States.
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States; Nanovaccine Institute, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
2
|
Abstract
Polyanhydrides (PAs) are a class of synthetic biodegradable polymers employed as controlled drug delivery vehicles. They can be synthesized and scaled up from low-cost starting materials. The structure of PAs can be manipulated synthetically to meet desirable characteristics. PAs are biocompatible, biodegradable, and generate nontoxic metabolites upon degradation, which are easily eliminated from the body. The rate of water penetrating into the polyanhydride (PA) matrix is slower than the anhydride bond cleavage. This phenomenon sets PAs as "surface-eroding drug delivery carriers." Consequently, a variety of PA-based drug delivery carriers in the form of solid implants, pasty injectable formulations, microspheres, nanoparticles, etc. have been developed for the sustained release of small molecule drugs, and vaccines, peptide drugs, and nucleic acid-based active agents. The rate of drug delivery is often controlled by the polymer erosion rate, which is influenced by the polymer structure and composition, crystallinity, hydrophobicity, pH of the release medium, device size, configuration, etc. Owing to the above-mentioned interesting physicochemical and mechanical properties of PAs, the present review focuses on the advancements made in the domain of synthetic biodegradable biomedical PAs for therapeutic delivery applications. Various classes of PAs, their structures, their unique characteristics, their physicochemical and mechanical properties, and factors influencing surface erosion are discussed in detail. The review also summarizes various methods involved in the synthesis of PAs and their utility in the biomedical domain as drug, vaccine, and peptide delivery carriers in different formulations are reviewed.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| |
Collapse
|
3
|
Dassanayake RP, Atkinson BM, Mullis AS, Falkenberg SM, Nicholson EM, Casas E, Narasimhan B, Bearson SMD. Bovine NK-lysin peptides exert potent antimicrobial activity against multidrug-resistant Salmonella outbreak isolates. Sci Rep 2021; 11:19276. [PMID: 34588573 PMCID: PMC8481502 DOI: 10.1038/s41598-021-98860-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Multidrug-resistant (MDR) Salmonella is a threat to public health. Non-antibiotic therapies could serve as important countermeasures to control MDR Salmonella outbreaks. In this study, antimicrobial activity of cationic α-helical bovine NK-lysin-derived antimicrobial peptides was evaluated against MDR Salmonella outbreak isolates. NK2A and NK2B strongly inhibited MDR Salmonella growth while NK1 and NK2C showed minimum-to-no growth inhibition. Scrambled-NK2A, which is devoid of α-helicity but has the same net positive charge as NK2A, also failed to inhibit bacterial growth. Incubation of negatively charged MDR Salmonella with NK2A showed increased Zeta potential, indicating bacterial-peptide electrostatic attraction. Confocal and transmission electron microscopy studies revealed NK2A-mediated damage to MDR Salmonella membranes. LPS inhibited NK2A-mediated growth suppression in a dose-dependent response, suggesting irreversible NK2A-LPS binding. LPS-NK2A binding and bacterial membrane disruption was also confirmed via electron microscopy using gold nanoparticle-NK2A conjugates. Finally, NK2A-loaded polyanhydride nanoparticles showed sustained peptide delivery and anti-bacterial activity. Together, these findings indicate that NK2A α-helicity and positive charge are prerequisites for antimicrobial activity and that MDR Salmonella killing is mediated by direct interaction of NK2A with LPS and the inner membrane, leading to bacterial membrane permeabilization. With further optimization using nano-carriers, NK2A has the potential to become a potent anti-MDR Salmonella agent.
Collapse
Affiliation(s)
- Rohana P Dassanayake
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA.
| | - Briony M Atkinson
- Agricultural Research Service, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, USDA, Ames, IA, USA
| | - Adam S Mullis
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Shollie M Falkenberg
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Eduardo Casas
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Shawn M D Bearson
- Agricultural Research Service, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, USDA, Ames, IA, USA.
| |
Collapse
|
4
|
Liu F, Bi S, Wang W, Duan Q, Feng Y, Chen J, Luo R, Huang Y, Lee J. Preparation of a modified g-C 3N 4 catalyst library and realization of a two-dimensional screening reaction. NEW J CHEM 2021. [DOI: 10.1039/d0nj05141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A color inkjet printing technique and high through-put screening technique were combined to establish a polymetallic sulphide composite g-C3N4 catalyst library and screen out high efficiency catalysts.
Collapse
Affiliation(s)
- Fenli Liu
- Lab of Env-Mat
- Department of Environmental Science
- School of Geography and Tourism
- Shaanxi Normal University
- Xi’an 710062
| | - Sifan Bi
- Lab of Env-Mat
- Department of Environmental Science
- School of Geography and Tourism
- Shaanxi Normal University
- Xi’an 710062
| | - Wenjing Wang
- Lab of Env-Mat
- Department of Environmental Science
- School of Geography and Tourism
- Shaanxi Normal University
- Xi’an 710062
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity
- College of Urban and Environmental Sciences
- Northwest University
- Xi’an 710127
- China
| | - Yunjin Feng
- Lab of Env-Mat
- Department of Environmental Science
- School of Geography and Tourism
- Shaanxi Normal University
- Xi’an 710062
| | - Jiayuan Chen
- Lab of Env-Mat
- Department of Environmental Science
- School of Geography and Tourism
- Shaanxi Normal University
- Xi’an 710062
| | - Run Luo
- Lab of Env-Mat
- Department of Environmental Science
- School of Geography and Tourism
- Shaanxi Normal University
- Xi’an 710062
| | - Yicai Huang
- Lab of Env-Mat
- Department of Environmental Science
- School of Geography and Tourism
- Shaanxi Normal University
- Xi’an 710062
| | - Jianchao Lee
- Lab of Env-Mat
- Department of Environmental Science
- School of Geography and Tourism
- Shaanxi Normal University
- Xi’an 710062
| |
Collapse
|
5
|
Kim RY, Rivera H, Evarts SE, Rodríguez-Martínez JA, Willis RR, Galloway DB, Falih F, McCall MJ, Smith SJ, Perz K, Smotkin ES. A Laser-Activated Membrane Introduction Mass Spectrometry Study of Proton Spillover Promoted Alkane Dehydrogenation. Anal Chem 2020; 92:13462-13469. [PMID: 32907325 DOI: 10.1021/acs.analchem.0c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Operando high-throughput evaluation of heterogeneous catalysts by laser-activated membrane introduction mass spectrometry (LAMIMS) elucidates the Pt loading dependence of methylcyclohexane dehydrogenation on platinized γ-alumina beads. A CO2 marking laser rapidly and sequentially heats catalyst beads positioned on a heat-dissipating carbon paper support that overlays a silicone membrane, separating the bead library reaction zone from a quadrupole mass analyzer. The toluene m/z peak varies logarithmically with Pt loading, suggesting that reactivity includes factors that are negatively correlated to Pt loading. These factors may include the Pt/γ-Al2O3 surface interfacial region as one component of a heterogeneous catalytically active surface area/mass. This work demonstrates LAMIMS as a broadly applicable high-throughput operando screening method for heterogeneous catalysts.
Collapse
Affiliation(s)
- Ryan Yongtae Kim
- Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Harry Rivera
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico 00931, United States
| | - Sara E Evarts
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - José A Rodríguez-Martínez
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico 00931, United States
| | - Richard R Willis
- UOP LLC, a Honeywell Company, Des Plaines, Illinois 60016 United States
| | | | - Falaah Falih
- UOP LLC, a Honeywell Company, Des Plaines, Illinois 60016 United States
| | - Michael J McCall
- UOP LLC, a Honeywell Company, Des Plaines, Illinois 60016 United States
| | - S Jackson Smith
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kyra Perz
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eugene S Smotkin
- Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States.,Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico 00931, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|