1
|
Di Genova G, Perrero J, Rosi M, Ceccarelli C, Rimola A, Balucani N. Hot Sulfur on the Rocks: The Reaction of Electronically Excited Sulfur Atoms with Water in an Ice-Surface Model. ACS EARTH & SPACE CHEMISTRY 2025; 9:844-855. [PMID: 40264811 PMCID: PMC12010427 DOI: 10.1021/acsearthspacechem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025]
Abstract
In this contribution, we present a theoretical investigation of the reaction involving atomic sulfur in its first electronically excited state, 1D, and H2O on an ice-surface model. This study is motivated by the work of Giustini et al. (ACS Earth Space Chem., 2024, 8, 2318), which indicated a strong effect of the presence of four additional water molecules in the S(1D) + H2O reaction compared to the pure gas-phase case. Our simulation treats the long-range interactions (H-bonds and dispersion forces) with the ice water molecules in a much more realistic way being based on the use of a cluster of 18 water molecules, thus overcoming the limits of the small cluster used by Giustini et al. According to our results, S(1D) reacts via two possible reaction mechanisms: (1) addition to the O atom of a water molecule with the formation of H2OS or (2) insertion into one of the O-H bonds of a water molecule with the formation of HOSH. Both H2OS and HOSH are stabilized on ice by energy dissipation rather than isomerizing or dissociating into two products as seen in the gas-phase reaction. The interaction with surrounding water molecules affects the entire reaction pathway by stabilizing intermediate species, reducing some barriers, and impeding the only two-product open channel of the gas-phase reaction. S(1D) can be produced by UV-induced photodissociation of various precursor molecules on the surface of interstellar or cometary ice or by other high-energy processes induced by electrons or cosmic rays also in the ice bulk. Therefore, our results can be of help in elucidating the mysterious sulfur chemistry occurring in the icy mantles of interstellar grains or in cometary nuclei. Furthermore, this study demonstrates that the product branching ratios of gas-phase reactions should not be uncritically used in modeling interstellar ice chemistry.
Collapse
Affiliation(s)
- Gabriella Di Genova
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Jessica Perrero
- Departament
de Quimica, Universitat Autònoma
de Barcelona, 08193 Catalonia, Spain
- Dipartimento
di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, 10125 Torino, Italy
| | - Marzio Rosi
- Dipartimento
di Ingegneria Civile e Ambientale, Università
degli Studi di Perugia, 06125 Perugia, Italy
| | - Cecilia Ceccarelli
- Univ.
Grenoble Alpes, CNRS, Institut de Planétologie
et d’Astrophysique de Grenoble (IPAG), 38100 Grenoble, France
| | - Albert Rimola
- Departament
de Quimica, Universitat Autònoma
de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Lakhal A, Gimbert Y, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Alkynyl Radicals, Myths and Realities. JACS AU 2025; 5:448-465. [PMID: 40017740 PMCID: PMC11862951 DOI: 10.1021/jacsau.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 03/01/2025]
Abstract
This Perspective deals with the organic chemistry of alkynyl radicals, a species that is ultimately still little known in the synthetic community. Starting with the first observations and characterizations of alkynyl radicals generated by various methodologies in the gas phase, we then particularly turned our attention to the implications of these highly reactive intermediates in organic synthesis and materials science. Mechanistic considerations have been provided, in particular, for the key steps of generating alkynyl radicals, which are mainly based on photochemical or thermal activation and single electron transfer processes. This Perspective should serve as a roadmap for the synthetic chemist in order to plan more reliably alkynylation reactions based on alkynyl radicals.
Collapse
Affiliation(s)
- Amal Lakhal
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Yves Gimbert
- Département
de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, 38050 Grenoble, France
| | - Virginie Mouriès-Mansuy
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Cyril Ollivier
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Louis Fensterbank
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
- Collège
de France, Chaire Activations en Chimie
Moléculaire, 11
place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
3
|
Santos JC, Enrique-Romero J, Lamberts T, Linnartz H, Chuang KJ. Formation of S-Bearing Complex Organic Molecules in Interstellar Clouds via Ice Reactions with C 2H 2, HS, and Atomic H. ACS EARTH & SPACE CHEMISTRY 2024; 8:1646-1660. [PMID: 39166258 PMCID: PMC11331529 DOI: 10.1021/acsearthspacechem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024]
Abstract
The chemical network governing interstellar sulfur has been the topic of unrelenting discussion for the past few decades due to the conspicuous discrepancy between its expected and observed abundances in different interstellar environments. More recently, the astronomical detections of CH3CH2SH and CH2CS highlighted the importance of interstellar formation routes for sulfur-bearing organic molecules with two carbon atoms. In this work, we perform a laboratory investigation of the solid-state chemistry resulting from the interaction between C2H2 molecules and SH radicals-both thought to be present in interstellar icy mantles-at 10 K. Reflection absorption infrared spectroscopy and quadrupole mass spectrometry combined with temperature-programmed desorption experiments are employed as analytical techniques. We confirm that SH radicals can kick-start a sulfur reaction network under interstellar cloud conditions and identify at least six sulfurated products: CH3CH2SH, CH2CHSH, HSCH2CH2SH, H2S2, and tentatively CH3CHS and CH2CS. Complementarily, we utilize computational calculations to pinpoint the reaction routes that play a role in the chemical network behind our experimental results. The main sulfur-bearing organic molecule formed under our experimental conditions is CH3CH2SH, and its formation yield increases with the ratios of H to other reactants. It serves as a sink to the sulfur budget within the network, being formed at the expense of the other unsaturated products. The astrophysical implications of the chemical network proposed here are discussed.
Collapse
Affiliation(s)
- Julia C. Santos
- Laboratory
for Astrophysics, Leiden Observatory, Leiden
University, PO Box 9513, 2300 RA Leiden, The Netherlands
| | - Joan Enrique-Romero
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Thanja Lamberts
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Leiden
Observatory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Harold Linnartz
- Laboratory
for Astrophysics, Leiden Observatory, Leiden
University, PO Box 9513, 2300 RA Leiden, The Netherlands
| | - Ko-Ju Chuang
- Laboratory
for Astrophysics, Leiden Observatory, Leiden
University, PO Box 9513, 2300 RA Leiden, The Netherlands
| |
Collapse
|
4
|
Perrero J, Vitorino J, Congiu E, Ugliengo P, Rimola A, Dulieu F. Binding energies of ethanol and ethylamine on interstellar water ices: synergy between theory and experiments. Phys Chem Chem Phys 2024; 26:18205-18222. [PMID: 38904093 PMCID: PMC11221575 DOI: 10.1039/d4cp01934b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Experimental and computational chemistry are two disciplines used to conduct research in astrochemistry, providing essential reference data for both astronomical observations and modeling. These approaches not only mutually support each other, but also serve as complementary tools to overcome their respective limitations. Leveraging on such synergy, we characterized the binding energies (BEs) of ethanol (CH3CH2OH) and ethylamine (CH3CH2NH2), two interstellar complex organic molecules (iCOMs), on crystalline and amorphous water ices through density functional theory (DFT) calculations and temperature-programmed desorption (TPD) experiments. Experimentally, CH3CH2OH and CH3CH2NH2 behave similarly, in which desorption temperatures are higher on the water ices than on a bare gold surface. Computed cohesive energies of pure ethanol and ethylamine bulk structures allow describing of the BEs of the pure species deposited on the gold surface, as extracted from the TPD curve analyses. The BEs of submonolayer coverages of CH3CH2OH and CH3CH2NH2 on the water ices cannot be directly extracted from TPD due to their co-desorption with water, but they are computed through DFT calculations, and found to be greater than the cohesive energy of water. The behaviour of CH3CH2OH and CH3CH2NH2 is different when depositing adsorbate multilayers on the amorphous ice, in that, according to their computed cohesive energies, ethylamine layers present weaker interactions compared to ethanol and water. Finally, from the computed BEs of ethanol, ethylamine and water, we can infer that the snow-lines of these three species in protoplanetary disks will be situated at different distances from the central star. It appears that a fraction of ethanol and ethylamine is already frozen on the grains in the water snow-lines, causing their incorporation in water-rich planetesimals.
Collapse
Affiliation(s)
- Jessica Perrero
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, 10125, Torino, Italy.
| | - Julie Vitorino
- CY Cergy Paris Université, Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, F-95000 Cergy, France.
| | - Emanuele Congiu
- CY Cergy Paris Université, Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, F-95000 Cergy, France.
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, 10125, Torino, Italy.
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
| | - François Dulieu
- CY Cergy Paris Université, Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, F-95000 Cergy, France.
| |
Collapse
|
5
|
Molpeceres G, Tsuge M, Furuya K, Watanabe N, San Andrés D, Rivilla VM, Colzi L, Aikawa Y. Carbon Atom Condensation on NH 3-H 2O Ices. An Alternative Pathway to Interstellar Methanimine and Methylamine. J Phys Chem A 2024. [PMID: 38709949 DOI: 10.1021/acs.jpca.3c08286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The recent discovery of the nature and behavior of carbon atoms interacting with interstellar ices has prompted a number of investigations on the chemistry initiated by carbon accretion on icy interstellar dust. In this work, we expand the range of processes promoted by carbon accretion to the chemistry initiated by the interaction of this atom with ammonia (NH3) using quantum chemical calculations. We found that carbon addition to the ammonia molecule forms a rather stable radical, CNH3, that is easily hydrogenated. The complete hydrogenation network is later studied. Our calculations reveal that while conversion to simpler molecules like HCN and HNC is indeed a possible outcome promoted by H-abstraction reactions, methylamine is also easily formed (CH3NH2). In fact, the stability of methylamine against hydrogen abstraction makes this molecule the preferred product of the reaction network. Our results serve as a stepping stone toward the accurate modeling of C-addition reactions in realistic astrochemical kinetic models.
Collapse
Affiliation(s)
- Germán Molpeceres
- Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113 0033, Japan
- Departamento de Astrofísica Molecular, Instituto de Física Fundamental (IFF-CSIC), C/Serrano 121, 28006 Madrid, Spain
| | - Masashi Tsuge
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - Kenji Furuya
- Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113 0033, Japan
- National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
| | - Naoki Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - David San Andrés
- Centro de Astrobiología (CAB), INTA-CSIC, Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Víctor M Rivilla
- Centro de Astrobiología (CAB), INTA-CSIC, Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Laura Colzi
- Centro de Astrobiología (CAB), INTA-CSIC, Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Yuri Aikawa
- Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113 0033, Japan
| |
Collapse
|
6
|
Martínez-Bachs B, Rimola A. Gas-Phase vs. Grain-Surface Formation of Interstellar Complex Organic Molecules: A Comprehensive Quantum-Chemical Study. Int J Mol Sci 2023; 24:16824. [PMID: 38069147 PMCID: PMC10706303 DOI: 10.3390/ijms242316824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Several organic chemical compounds (the so-called interstellar complex organic molecules, iCOMs) have been identified in the interstellar medium (ISM). Examples of iCOMs are formamide (HCONH2), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), or formic acid (HCOOH). iCOMs can serve as precursors of other organic molecules of enhanced complexity, and hence they are key species in chemical evolution in the ISM. The formation of iCOMs is still a subject of a vivid debate, in which gas-phase or grain-surface syntheses have been postulated. In this study, we investigate the grain-surface-formation pathways for the four above-mentioned iCOMs by transferring their primary gas-phase synthetic routes onto water ice surfaces. Our objective is twofold: (i) to identify potential grain-surface-reaction mechanisms leading to the formation of these iCOMs, and (ii) to decipher either parallelisms or disparities between the gas-phase and the grain-surface reactions. Results obtained indicate that the presence of the icy surface modifies the energetic features of the reactions compared to the gas-phase scenario, by increasing some of the energy barriers. Therefore, the investigated gas-phase mechanisms seem unlikely to occur on the icy grains, highlighting the distinctiveness between the gas-phase and the grain-surface chemistry.
Collapse
Affiliation(s)
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain;
| |
Collapse
|
7
|
Ceccarelli C. Spiers Memorial Lecture: Astrochemistry at high resolution. Faraday Discuss 2023; 245:11-51. [PMID: 37403476 PMCID: PMC10510039 DOI: 10.1039/d3fd00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023]
Abstract
Astrochemistry is the science that studies the chemistry in the Universe, namely the combination of two fields: astronomy and chemistry. It started about fifty years ago and it has progressed in leaps and bounds, often triggered by the advent of new telescopes. From the collection of new interstellar molecule detections, astrochemistry has evolved more and more in the quest to understand how they are formed and thrive in the harsh conditions of the interstellar medium. Collaboration between astronomers and chemists has never been more necessary than today, when new powerful astronomical facilities provide us with ever sharper images of the regions where interstellar molecules are present. This review focuses on the special case of interstellar complex organic molecules (iCOMs), one the most debated astrochemical fields and where the astronomers-chemists collaboration and synergy is indispensable. The review will go through the various phases of the formation of planetary system similar to the solar system, providing the most recent observational picture at each step. The current scenarios of the iCOMs formation will be laid down and the critical chemical processes and quantities involved in each of them will be discussed. The major goal of this review is not only to present the progress but, more importantly, to highlight the many areas of uncertainty. A few specific cases will be discussed to give practical examples of why the huge challenge that represents the formation of iCOMs can only be won if chemists and astronomers work together.
Collapse
|
8
|
Liang P, de Aragão EVF, Giani L, Mancini L, Pannacci G, Marchione D, Vanuzzo G, Faginas-Lago N, Rosi M, Skouteris D, Casavecchia P, Balucani N. OH( 2Π) + C 2H 4 Reaction: A Combined Crossed Molecular Beam and Theoretical Study. J Phys Chem A 2023. [PMID: 37207281 DOI: 10.1021/acs.jpca.2c08662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The reaction between the ground-state hydroxyl radical, OH(2Π), and ethylene, C2H4, has been investigated under single-collision conditions by the crossed molecular beam scattering technique with mass-spectrometric detection and time-of-flight analysis at the collision energy of 50.4 kJ/mol. Electronic structure calculations of the underlying potential energy surface (PES) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of product branching fractions on the derived PES for the addition pathway have been performed. The theoretical results indicate a temperature-dependent competition between the anti-/syn-CH2CHOH (vinyl alcohol) + H, CH3CHO (acetaldehyde) + H, and H2CO (formaldehyde) + CH3 product channels. The yield of the H-abstraction channel could not be quantified with the employed methods. The RRKM results predict that under our experimental conditions, the anti- and syn-CH2CHOH + H product channels account for 38% (in similar amounts) of the addition mechanism yield, the H2CO + CH3 channel for ∼58%, while the CH3CHO + H channel is formed in negligible amount (<4%). The implications for combustion and astrochemical environments are discussed.
Collapse
Affiliation(s)
- Pengxiao Liang
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Emília Valença Ferreira de Aragão
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Master-Tec Srl, Via Sicilia, 41, Perugia 06128, Italy
| | - Lisa Giani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Université Grenoble Alpes, 621 Av. Centrale, Saint-Martin-d'Hères 38400, France
| | - Luca Mancini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Giacomo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Demian Marchione
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Noelia Faginas-Lago
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Master-Tec Srl, Via Sicilia, 41, Perugia 06128, Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile Ed Ambientale, Università Degli Studi di Perugia, Perugia 06125, Italy
| | | | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| |
Collapse
|
9
|
Ben Chouikha I, Kerkeni B, Ouerfelli G, Makroni L, Nyman G. Quantum chemical study of the reaction paths and kinetics of acetaldehyde formation on a methanol-water ice model. RSC Adv 2022; 12:18994-19005. [PMID: 35873325 PMCID: PMC9241153 DOI: 10.1039/d2ra03555c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Acetaldehyde (CH3CHO) is ubiquitous in interstellar space and is important for astrochemistry as it can contribute to the formation of amino acids through reaction with nitrogen containing chemical species. Quantum chemical and reaction kinetics studies are reported for acetaldehyde formation from the chemical reaction of C(3P) with a methanol molecule adsorbed at the eighth position of a cubic water cluster. We present extensive quantum chemical calculations for total spin S = 1 and S = 0. The UωB97XD/6-311++G(2d,p) model chemistry is employed to optimize the structures, compute minimum energy paths and zero-point vibrational energies of all reaction steps. For the optimized structures, the calculated energies are refined by CCSD(T) single point computations. We identify four transition states on the triplet potential energy surface (PES), and one on the singlet PES. The reaction mechanism involves the intermediate formation of CH3OCH adsorbed on the ice cluster. The rate limiting step for forming acetaldehyde is the C-O bond breaking in CH3OCH to form adsorbed CH3 and HCO. We find two positions on the reaction path where spin crossing may be possible such that acetaldehyde can form in its singlet spin state. Using variational transition-state theory with multidimensional tunnelling we provide thermal rate constants for the energetically rate limiting step for both spin states and discuss two routes to acetaldehyde formation. As expected, quantum effects are important at low temperatures.
Collapse
Affiliation(s)
- Islem Ben Chouikha
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar Tunis 2092 Tunisia
| | - Boutheïna Kerkeni
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar Tunis 2092 Tunisia
- ISAMM, Université de la Manouba La Manouba 2010 Tunisia
| | - Ghofrane Ouerfelli
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar Tunis 2092 Tunisia
- Taif University Taif Saudi Arabia
| | - Lily Makroni
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Gunnar Nyman
- Department of Chemistry and Molecular Biology, University of Gothenburg Sweden
| |
Collapse
|
10
|
The Binary-Encounter-Bethe Model for Computation of Singly Differential Cross Sections Due to Electron-Impact Ionization. ATOMS 2022. [DOI: 10.3390/atoms10020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the present work, we assess the effectiveness of singly differential cross sections (SDCS) due to electron-impact ionization by invoking the binary-encounter-Bethe (BEB) model on various atomic and molecular targets. The computed results were compared with the experimental and theoretical data. A good agreement was observed between the present and the available results. This agreement improves as the incident energy of the projectile increases. The model can be applied to compute the SDCS for the ions produced due to the electron-impact dissociative ionization process and the average energy due to the secondary electrons. Both these quantities are of interest in plasma processing and radiation physics.
Collapse
|
11
|
Rimola A, Balucani N, Ceccarelli C, Ugliengo P. Tracing the Primordial Chemical Life of Glycine: A Review from Quantum Chemical Simulations. Int J Mol Sci 2022; 23:4252. [PMID: 35457069 PMCID: PMC9030215 DOI: 10.3390/ijms23084252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022] Open
Abstract
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally. Thus, Gly is a paradigmatic system for biomolecular building blocks to investigate how they can be synthesized in astrophysical environments, transported and delivered by fragments of asteroids (meteorites, once they land on Earth) and comets (interplanetary dust particles that land on Earth) to the primitive Earth, and there react to form biopolymers as a step towards the emergence of life. Quantum chemical investigations addressing these Gly-related events have been performed, providing fundamental atomic-scale information and quantitative energetic data. However, they are spread in the literature and difficult to harmonize in a consistent way due to different computational chemistry methodologies and model systems. This review aims to collect the work done so far to characterize, at a quantum mechanical level, the chemical life of Gly, i.e., from its synthesis in the interstellar medium up to its polymerization on Earth.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
- Osservatorio Astrosico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
| | - Cecilia Ceccarelli
- CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, 38000 Grenoble, France;
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| |
Collapse
|