1
|
Bastardo-Méndez M, Rangel HR, Pujol FH, Grillet ME, Jaspe RC, Malaver N, Rodríguez M, Zamora-Figueroa A. Detection of SARS-CoV-2 in wastewater as an earlier predictor of COVID-19 epidemic peaks in Venezuela. Sci Rep 2024; 14:27294. [PMID: 39516586 PMCID: PMC11549330 DOI: 10.1038/s41598-024-78982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Wastewater-based epidemiological surveillance has proven to be a useful and cost-effective tool for detecting COVID-19 outbreaks. Here, our objective was to evaluate its potential as an early warning system in Venezuela by detecting SARS-CoV-2 RNA in wastewater and its correlation with reported cases of COVID-19. Viral RNA was concentrated from wastewater collected at various sites in Caracas (northern Venezuela), from September 2021 to July 2023, using the polyethylene glycol (PEG) precipitation method. Viral quantification was performed by RT-qPCR targeting the N1 and ORF1ab genes. A significant association (p < 0.05) was found between viral load in wastewater and reported cases of COVID-19 up to six days after sampling. During the whole study, two populated areas of the city were persistent hotspots of viral infection. The L452R mutation, suggestive of the presence of the Delta variant, was identified in the only sample where a complete genomic sequence could be obtained. Significant differences (p < 0.05) between the physicochemical conditions of the wastewater samples positive and negative for the virus were found. Our results support proof of concept that wastewater surveillance can serve as an early warning system for SARS-CoV-2 outbreaks, complementing public health surveillance in those regions where COVID-19 is currently underreported.
Collapse
Affiliation(s)
- Marjorie Bastardo-Méndez
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Héctor R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - Flor H Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - María-Eugenia Grillet
- Centro de Ecología y Evolución, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Rossana C Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - Nora Malaver
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - María Rodríguez
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Alejandra Zamora-Figueroa
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela.
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela.
| |
Collapse
|
2
|
Wani H, Menon S, Desai D, D’Souza N, Bhathena Z, Desai N, Rose JB, Shrivastava S. Wastewater-Based Epidemiology of SARS-CoV-2: Assessing Prevalence and Correlation with Clinical Cases. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:131-143. [PMID: 37133676 PMCID: PMC10155169 DOI: 10.1007/s12560-023-09555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Wastewater-based epidemiology has been recognized as a tool to monitor the progress of COVID-19 pandemic worldwide. The study presented herein aimed at quantitating the SARS-CoV-2 RNA in the wastewaters, predicting the number of infected individuals in the catchment areas, and correlating it with the clinically reported COVID-19 cases. Wastewater samples (n = 162) from different treatment stages were collected from three wastewater treatment plants (WWTPs) from Mumbai city during the 2nd surge of COVID-19 (April 2021 to June 2021). SARS-CoV-2 causing COVID-19, was detected in 76.2% and 4.8% of raw and secondary treated (n = 63 each) wastewater samples respectively while all tertiary treated samples (n = 36) were negative. The quantity of SARS-CoV-2 RNA determined as gene copies/100 mL varied among all the three WWTPs under study. The gene copy numbers thus obtained were further used to estimate the number of infected individuals within the population served by these WWTPs using two published methods. A positive correlation (p < 0.05) was observed between the estimated number of infected individuals and clinically confirmed COVID-19 cases reported during the sampling period in two WWTPs. Predicted infected individuals calculated in this study were 100 times higher than the reported COVID-19 cases in all the WWTPs assessed. The study findings demonstrated that the present wastewater treatment technologies at the three WWTPs studied were adequate to remove the virus. However, SARS-CoV-2 genome surveillance with emphasis on monitoring its variants should be implemented as a routine practice to prepare for any future surge in infections.
Collapse
Affiliation(s)
- Hima Wani
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Smita Menon
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
- Department of Microbiology, Bhavan’s College, Andheri West, Mumbai, Maharashtra 400058 India
| | - Dipen Desai
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Nishita D’Souza
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Zarine Bhathena
- Department of Microbiology, Bhavan’s College, Andheri West, Mumbai, Maharashtra 400058 India
| | - Nishith Desai
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Sandhya Shrivastava
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| |
Collapse
|