1
|
Ganguly K, Randhawa A, Dutta SD, Park H, Mohammad Hossein Pour M, Kim H, Acharya R, Patil TV, Shin BS, Kim DH, Lim KT. Ultrathin, Stimuli-Responsive, Antimicrobial, Self-Cleaning, Reusable, and Biodegradable, Micro/Nanofibrous Electrospun Mat as an Efficient Face Mask Filter for Airborne Disease Prevention. NANO LETTERS 2025; 25:7641-7650. [PMID: 40311123 DOI: 10.1021/acs.nanolett.4c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
A multifunctional, electrospun, ultrathin face mask is desirable for preventing disease spread while ensuring breathability. However, balancing ultrathin construction with antimicrobial efficacy is challenging. Here, we fabricated an ultrathin micro/nanofibrous electrospun matrix, consisting of three biodegradable polymer layers, for high antibacterial efficiency, breathability, and biodegradability. The outer layer, with an average thickness of 9.01 ± 3.1 μm, is composed of polycaprolactone (PCL), silver nitrate (AgNO3), and β-cyclodextrin (β-CD). The middle layer, with a thickness of 4.61 ± 1.4 μm, comprises poly(vinyl alcohol) (PVA) and multiwalled carbon nanotubes (MWCNT) as a conductive layer. The inner layer, with a thickness of 5.12 ± 1.4 μm, contains PVA, carboxymethyl chitosan (CMC), and cellulose nanofibrils (CNFs) as a superabsorbent layer, supported by medical gauze. With a total thickness of ∼300 μm, the mask provides antibacterial efficacy, self-cleaning, reusability, mechanical stability, and biodegradability. This design advances filtering face masks, offering a solution to combat contagious diseases while minimizing environmental impact.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
| | | | | | | | | | - Beom-Soo Shin
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Dae Hyun Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| |
Collapse
|
2
|
Fazelpour F, Hill LC, Markovetz MR, Hill DB. Analytic Approaches to Physicochemical Properties of Materials for Biomedical Applications Across Nanoscopic and Macroscopic Length Scales. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:473-495. [PMID: 39952642 DOI: 10.1146/annurev-anchem-061622-015821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The design and implementation of biomedical devices for both diagnostic and direct medical applications have revolutionized patient care, paving the way for improved patient outcomes. Understanding the characteristics of materials used in the design of new devices is essential for their advancement. In this review, our goal is to assist biomedical researchers in appreciating the importance of these properties and the role of selecting the proper measurement. We discuss how the nanoscopic molecular composition, arrangement, and interactions generate the properties of liquids, solids, viscoelastic materials, and colloids and discuss the measurement techniques that can be used to assess these properties from the nanoscale to the macroscale. We explore the linear and nonlinear mechanical responses of materials, elucidate their behaviors under varying conditions, and discuss corresponding measurement techniques. Finally, we highlight the importance of tailoring measurements to the underlying biological processes and applications being investigated.
Collapse
Affiliation(s)
- Farnaz Fazelpour
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Lindsey C Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Nguyen HK, Duke MM, Grayton QE, Broberg CA, Schoenfisch MH. Impact of nitric oxide donors on capsule, biofilm and resistance profiles of Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107339. [PMID: 39304122 PMCID: PMC11540743 DOI: 10.1016/j.ijantimicag.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Klebsiella pneumoniae is considered to be a critical public health threat due to its ability to cause fatal, multi-drug-resistant infections in the bloodstream and key organs. The polysaccharide-based capsule layer that shields K. pneumoniae from clearance via innate immunity is a prominent virulence factor. K. pneumoniae also forms biofilms on biotic and abiotic surfaces. These biofilms significantly reduce penetration by, and antibacterial activity from, traditional antibiotics. Nitric oxide (NO), an endogenous molecule involved in the innate immune system, is equally effective at eradicating bacteria but without engendering resistance. This study investigated the effects of NO-releasing small molecules capable of diverse release kinetics on the capsule and biofilm formation characteristics of multiple K. pneumoniae strains. The use of NO donors with moderate and extended NO-release properties (i.e., half-life >1.8 h) inhibited bacterial growth. Additionally, treatment with NO decreased capsule mucoviscosity in K. pneumoniae strains that normally exhibit hypermucoviscosity. The NO donors were also effective against K. pneumoniae biofilms at the same minimum biocidal concentrations that eliminated planktonic bacteria, while meropenem showed little antibacterial action in the same experiments. These results represent the first account of exogenous NO affecting biomarkers involved in K. pneumoniae infections, and may therefore inform future development of NO-based therapeutics for treating such infections.
Collapse
Affiliation(s)
- Huan K Nguyen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Magdalena M Duke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Grayton QE, Conlon IL, Broberg CA, Schoenfisch MH. Impact of Nitric Oxide-Release Kinetics on Antifungal Activity. J Fungi (Basel) 2024; 10:308. [PMID: 38786663 PMCID: PMC11121837 DOI: 10.3390/jof10050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Pathogenic fungi are an increasing health threat due to the rise in drug resistance. The limited number of antifungals currently available and growing incidence of multi-drug-resistant fungi has caused rising healthcare costs and a decreased quality of life for patients with fungal infections. Nitric oxide (NO) has previously been shown to act as an antimicrobial agent, albeit with a limited understanding of the effects of the NO-release kinetics against pathogenic fungi. Herein, the antifungal effects of four nitric oxide-releasing small molecules were studied against the pathogenic fungi Candida albicans, Candida auris, Cryptococcus neoformans, and Aspergillus fumigatus, to demonstrate the broad-spectrum antifungal activity of NO. A bolus dose of NO was found to eradicate fungi after 24 h, where nitric oxide donors with shorter half-lives achieved antifungal activity at lower concentrations and thus had wider selectivity indexes. Each NO donor was found to cause a severe surface destruction of fungi, and all NO donors exhibited compatibility with currently prescribed antifungals against several different fungi species.
Collapse
Affiliation(s)
- Quincy E. Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Q.E.G.); (C.A.B.)
| | - Ivie L. Conlon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Q.E.G.); (C.A.B.)
| | - Christopher A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Q.E.G.); (C.A.B.)
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Q.E.G.); (C.A.B.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Rouillard KR, Esther CP, Kissner WJ, Plott LM, Bowman DW, Markovetz MR, Hill DB. Combination treatment to improve mucociliary transport of Pseudomonas aeruginosa biofilms. PLoS One 2024; 19:e0294120. [PMID: 38394229 PMCID: PMC10890754 DOI: 10.1371/journal.pone.0294120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 02/25/2024] Open
Abstract
People with muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often have acute or chronic respiratory infections that are difficult to treat due in part to the accumulation of hyperconcentrated mucus within the airway. Mucus accumulation and obstruction promote chronic inflammation and infection and reduce therapeutic efficacy. Bacterial aggregates in the form of biofilms exhibit increased resistance to mechanical stressors from the immune response (e.g., phagocytosis) and chemical treatments including antibiotics. Herein, combination treatments designed to disrupt the mechanical properties of biofilms and potentiate antibiotic efficacy are investigated against mucus-grown Pseudomonas aeruginosa biofilms and optimized to 1) alter biofilm viscoelastic properties, 2) increase mucociliary transport rates, and 3) reduce bacterial viability. A disulfide bond reducing agent (tris(2-carboxyethyl)phosphine, TCEP), a surfactant (NP40), a biopolymer (hyaluronic acid, HA), a DNA degradation enzyme (DNase), and an antibiotic (tobramycin) are tested in various combinations to maximize biofilm disruption. The viscoelastic properties of biofilms are quantified with particle tracking microrheology and transport rates are quantified in a mucociliary transport device comprised of fully differentiated primary human bronchial epithelial cells. The combination of the NP40 with hyaluronic acid and tobramycin was the most effective at increasing mucociliary transport rates, decreasing the viscoelastic properties of mucus, and reducing bacterial viability. Multimechanistic targeting of biofilm infections may ultimately result in improved clinical outcomes, and the results of this study may be translated into future in vivo infection models.
Collapse
Affiliation(s)
- Kaitlyn R. Rouillard
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC, United States of America
| | | | - William J. Kissner
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC, United States of America
| | - Lucas M. Plott
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC, United States of America
| | - Dean W. Bowman
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC, United States of America
| | - Matthew R. Markovetz
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC, United States of America
| | - David B. Hill
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC, United States of America
- Joint Department of Biomedical Engineering, UNC Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
6
|
Jiang S, Chen H, Shen P, Zhou Y, Li Q, Zhang J, Chen Y. Gasotransmitter Research Advances in Respiratory Diseases. Antioxid Redox Signal 2024; 40:168-185. [PMID: 37917094 DOI: 10.1089/ars.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Gasotransmitters are small gas molecules that are endogenously generated and have well-defined physiological functions. The most well-defined gasotransmitters currently are nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), while other potent gasotransmitters include ammonia, methane, cyanide, hydrogen gas, and sulfur dioxide. Gasotransmitters play a role in various respiratory diseases such as asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, lung infection, bronchiectasis, cystic fibrosis, primary ciliary dyskinesia, and COVID-19. Recent Advances: Gasotransmitters can act as biomarkers that facilitate disease diagnosis, indicate disease severity, predict disease exacerbation, and evaluate disease outcomes. They also have cell-protective properties, and many studies have been conducted to explore their pharmacological applications. Innovative drug donors and drug delivery methods have been invented to amplify their therapeutic effects. Critical Issues: In this article, we briefly reviewed the physiological and pathophysiological functions of some gasotransmitters in the respiratory system, the progress in detecting exhaled gasotransmitters, as well as innovative drugs derived from these molecules. Future Directions: The current challenge for gasotransmitter research includes further exploring their physiological and pathological functions, clarifying their complicated interactions, exploring suitable drug donors and delivery devices, and characterizing new members of gasotransmitters. Antioxid. Redox Signal. 40, 168-185.
Collapse
Affiliation(s)
- Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Haijie Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Pu Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yumou Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Qiaoyu Li
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Gupta A, Luong JHT, Gedanken A. Zirconium-Coated β-Cyclodextrin Nanomaterials for Biofilm Eradication. ACS APPLIED BIO MATERIALS 2023; 6:5470-5480. [PMID: 37983256 DOI: 10.1021/acsabm.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Under alkaline treatment, zirconyl chloride (ZrOCl2.8H2O) became a zirconia gel and formed a stable complex with beta-cyclodextrin (βCD). This complex was highly active in reactive oxygen species (ROS) formation via H2O2 decomposition. Its surface with numerous hydroxyl groups acts as an ionic sponge to capture the charged reaction intermediates, including superoxide (O2-•) and the hydroxyl radical (•OH). ROS, especially •OH radicals, are harmful to living microorganisms because of their kinetic instability, high oxidation potential, and chemical nonselectivity. Therefore, •OH radicals can engage in fast reactions with virtually any adjacent biomolecule. With H2O2, the complex with cationic and hydrophobic moieties interacted with the anionic bacterial membrane of two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains. The Zr-βCD-H2O2 also eradicated more than 99% of the biofilm of these four pathogens. Considering the difficult acquisition of resistance to the oxidation of •OH, the results suggested that this βCD-based nanomaterial might be a promising agent to target both drug-resistant pathogens with no cytotoxicity and exceptional antimicrobial activity.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
8
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023; 65:647-666. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
9
|
Lin QW, Lu JQ, Huang YS, Liu JJ, Chen WM, Lin J. Cyclic Diguanylate G-Quadruplex Inducer-Nitric Oxide Donor Conjugate as a Bifunctional Antibiofilm Agent and Antibacterial Synergist against Pseudomonas aeruginosa with a Hyperbiofilm Phenotype. J Med Chem 2023; 66:11927-11939. [PMID: 37606617 DOI: 10.1021/acs.jmedchem.3c00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Antibiotic resistance caused by biofilm formation is a clinical challenge. Nitric oxide (NO) can effectively disperse a mature biofilm and can also synergistically influence the level of cyclic diguanylate (c-di-GMP), a universal secondary messenger that plays an important role in biofilm formation in bacteria. Based on our previous finding that c-di-GMP G-quadruplex inducers are effective biofilm formation inhibitors, we designed and synthesized a c-di-GMP G-quadruplex inducer-NO donor conjugate (A11@NO) as a bifunctional antibiofilm agent after obtaining the c-di-GMP G-quadruplex inducer (A11), which has an amino group capable of binding to a nitroso group (NO donor). The conjugate A11@NO showed better biofilm inhibition efficiency than A11, and it can also eradicate mature biofilm. Additionally, it exhibited good antimicrobial synergism against Pseudomonas aeruginosa and helped elevate the bactericidal efficiency of tobramycin against biofilm-formed bacteria. In combination with tobramycin, A11@NO also improved the survival rate of Caenorhabditis elegans in a hyperbiofilm environment.
Collapse
Affiliation(s)
- Qian-Wen Lin
- College of Pharmacy, Jinan University, Guangzhou 511400, China
| | - Jin-Qiang Lu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, P. R. China
| | - Ye-Si Huang
- College of Pharmacy, Jinan University, Guangzhou 511400, China
| | - Jie-Jiao Liu
- College of Pharmacy, Jinan University, Guangzhou 511400, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 511400, China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 511400, China
| |
Collapse
|
10
|
Grayton QE, Nguyen HK, Broberg CA, Ocampo J, Nagy SG, Schoenfisch MH. Biofilm Dispersal, Reduced Viscoelasticity, and Antibiotic Sensitization via Nitric Oxide-Releasing Biopolymers. ACS Infect Dis 2023; 9:1730-1741. [PMID: 37566512 DOI: 10.1021/acsinfecdis.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Compared to planktonic bacteria, biofilms are notoriously difficult to eradicate due to their inherent protection against the immune response and antimicrobial agents. Inducing biofilm dispersal to improve susceptibility to antibiotics is an attractive therapeutic avenue for eradicating biofilms. Nitric oxide (NO), an endogenous antibacterial agent, has previously been shown to induce biofilm dispersal, but with limited understanding of the effects of NO-release properties. Herein, the antibiofilm effects of five promising NO-releasing biopolymer candidates were studied by assessing dispersal, changes in biofilm viscoelasticity, and increased sensitization to tobramycin after treatment with NO. A threshold level of NO was needed to achieve biofilm dispersal, with longer-releasing systems requiring lower concentrations. The most positively charged NO-release systems (from the presence of primary amines) led to the greatest reduction in viscoelasticity of Pseudomonas aeruginosa biofilms. Co-treatment of tobramycin with the NO-releasing biopolymer greatly decreased the dose of tobramycin required to eradicate tobramycin-susceptible and -resistant biofilms in both cellular and tissue models.
Collapse
|
11
|
Rouillard KR, Esther CP, Kissner WJ, Plott LM, Bowman DW, Markovetz MR, Hill DB. Combination Treatment to Improve Mucociliary Transport of Pseudomonas aeruginosa Biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553173. [PMID: 37645913 PMCID: PMC10461968 DOI: 10.1101/2023.08.14.553173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
People with muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often have acute or chronic respiratory infections that are difficult to treat due in part to the accumulation of hyperconcentrated mucus within the airway. Mucus accumulation and obstruction promote chronic inflammation and infection and reduce therapeutic efficacy. Bacterial aggregates in the form of biofilms exhibit increased resistance to mechanical stressors from the immune response (e.g., phagocytosis) and chemical treatments including antibiotics. Herein, combination treatments designed to disrupt the mechanical properties of biofilms and potentiate antibiotic efficacy are investigated against mucus-grown Pseudomonas aeruginosa biofilms and optimized to 1) alter biofilm viscoelastic properties, 2) increase mucociliary transport rates, and 3) reduce bacterial viability. A disulfide bond reducing agent (tris(2-carboxyethyl)phosphine, TCEP), a surfactant (NP40), a biopolymer (hyaluronic acid, HA), a DNA degradation enzyme (DNase), and an antibiotic (tobramycin) are tested in various combinations to maximize biofilm disruption. The viscoelastic properties of biofilms are quantified with particle tracking microrheology and transport rates are quantified in a mucociliary transport device comprised of fully differentiated primary human bronchial epithelial cells. The combination of the NP40 with hyaluronic acid and tobramycin was the most effective at increasing mucociliary transport rates, decreasing the viscoelastic properties of mucus, and reducing bacterial viability. Multimechanistic targeting of biofilm infections may ultimately result in improved clinical outcomes, and the results of this study may be translated into future in vivo infection models.
Collapse
Affiliation(s)
| | | | | | - Lucas M Plott
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC 27599
| | - Dean W Bowman
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC 27599
| | | | - David B Hill
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC 27599
- Joint Department of Biomedical Engineering, UNC Chapel Hill, NC 27599
| |
Collapse
|
12
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
13
|
Rouillard KR, Markovetz MR, Kissner WJ, Boone WL, Plott LM, Hill DB. Altering the viscoelastic properties of mucus-grown Pseudomonas aeruginosa biofilms affects antibiotic susceptibility. Biofilm 2023; 5:100104. [PMID: 36711323 PMCID: PMC9880403 DOI: 10.1016/j.bioflm.2023.100104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
The viscoelastic properties of biofilms are correlated with their susceptibility to mechanical and chemical stress, and the airway environment in muco-obstructive pulmonary diseases (MOPD) facilitates robust biofilm formation. Hyperconcentrated, viscoelastic mucus promotes chronic inflammation and infection, resulting in increased mucin and DNA concentrations. The viscoelastic properties of biofilms are regulated by biopolymers, including polysaccharides and DNA, and influence responses to antibiotics and phagocytosis. We hypothesize that targeted modulation of biofilm rheology will compromise structural integrity and increase antibiotic susceptibility and mucociliary transport. We evaluate biofilm rheology on the macro, micro, and nano scale as a function of treatment with a reducing agent, a biopolymer, and/or tobramycin to define the relationship between the viscoelastic properties of biofilms and susceptibility. Disruption of the biofilm architecture is associated with altered macroscopic and microscopic moduli, rapid vector permeability, increased antibiotic susceptibility, and improved mucociliary transport, suggesting that biofilm modulating therapeutics will improve the treatment of chronic respiratory infections in MOPD.
Collapse
Affiliation(s)
- Kaitlyn R. Rouillard
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew R. Markovetz
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William J. Kissner
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William L. Boone
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lucas M. Plott
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David B. Hill
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina, Chapel Hill, NC, 27599, USA,Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,Corresponding author. Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Abstract
The pathological properties of airway mucus in cystic fibrosis (CF) are dictated by mucus concentration and composition, with mucins and DNA being responsible for mucus viscoelastic properties. As CF pulmonary disease progresses, the concentrations of mucins and DNA increase and are associated with increased mucus viscoelasticity and decreased transport. Similarly, the biophysical properties of bacterial biofilms are heavily influenced by the composition of their extracellular polymeric substances (EPS). While the roles of polymer concentration and composition in mucus and biofilm mechanical properties have been evaluated independently, the relationship between mucus concentration and composition and the biophysical properties of biofilms grown therein remains unknown. Pseudomonas aeruginosa biofilms were grown in airway mucus as a function of overall concentration and DNA concentration to mimic healthy, and CF pathophysiology and biophysical properties were evaluated with macro- and microrheology. Biofilms were also characterized after exposure to DNase or DTT to examine the effects of DNA and mucin degradation, respectively. Identifying critical targets in biofilms for disrupting mechanical stability in highly concentrated mucus may lead to the development of efficacious biofilm therapies and ultimately improve CF patient outcomes. Overall mucus concentration was the predominant contributor to biofilm viscoelasticity and both DNA degradation and mucin reduction resulted in compromised biofilm mechanical strength. IMPORTANCE Pathological mucus in cystic fibrosis (CF) is highly concentrated and insufficiently cleared from the airway, causing chronic inflammation and infection. Pseudomonas aeruginosa establishes chronic infection in the form of biofilms within mucus, and this study determined that biofilms formed in more concentrated mucus were more robust and less susceptible to mechanical and chemical challenges compared to biofilms grown in lower concentrated mucus. Neither DNA degradation nor disulfide bond reduction was sufficient to fully degrade biofilms. Mucus rehydration should remain a priority for treating CF pulmonary disease with concomitant multimechanistic biofilm degradation agents and antibiotics to clear chronic infection.
Collapse
|
15
|
Poh WH, Rice SA. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022; 27:molecules27030674. [PMID: 35163933 PMCID: PMC8839391 DOI: 10.3390/molecules27030674] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- Correspondence:
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
16
|
Ghalei S, Douglass M, Handa H. Nitric Oxide-Releasing Gelatin Methacryloyl/Silk Fibroin Interpenetrating Polymer Network Hydrogels for Tissue Engineering Applications. ACS Biomater Sci Eng 2021; 8:273-283. [PMID: 34890206 DOI: 10.1021/acsbiomaterials.1c01121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial infection is one of the principal reasons for the failure of tissue engineering scaffolds. Therefore, the development of multifunctional scaffolds that not only are able to guide tissue regeneration but also can inhibit bacterial colonization is of great importance for tissue engineering applications. In this study, a highly antibacterial, biocompatible, and biodegradable scaffold based on silk fibroin (SF) and gelatin methacryloyl (GelMA) was prepared. Sequential cross-linking of GelMA and SF under UV irradiation and methanol treatment, respectively, resulted in the formation of interpenetrating network (IPN) hydrogels with a porous structure. In addition, impregnation of the hydrogels with a nitric oxide (NO) donor molecule, S-nitroso-N-acetylpenicillamine (SNAP), led to the development of NO-releasing scaffolds with strong antibacterial properties. According to the obtained results, the addition of SF to GelMA hydrogels caused an enhancement in the mechanical properties and NO release kinetics and prevented their rapid enzymatic degradation in aqueous media. Furthermore, swelling the GelMA-SF scaffolds with SNAP resulted in a bacteria reduction efficiency of >99.9% against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The scaffolds also showed great cytocompatibility in vitro by increasing the proliferation and supporting the adhesion of 3T3 mouse fibroblast cells. Overall, GelMA-SF-SNAP showed great promise to be used as a scaffold for tissue engineering and wound healing applications.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
17
|
Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 2021; 16:1905-1923. [PMID: 34348474 DOI: 10.2217/nnm-2021-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The increasing burden of respiratory diseases caused by microbial infections poses an immense threat to global health. This review focuses on the various types of biofilms that affect the respiratory system and cause pulmonary infections, specifically bacterial biofilms. The article also sheds light on the current strategies employed for the treatment of such pulmonary infection-causing biofilms. The potential of nanocarriers as an effective treatment modality for pulmonary infections is discussed, along with the challenges faced during treatment and the measures that may be implemented to overcome these. Understanding the primary approaches of treatment against biofilm infection and applications of drug-delivery systems that employ nanoparticle-based approaches in the disruption of biofilms are of utmost interest which may guide scientists to explore the vistas of biofilm research while determining suitable treatment modalities for pulmonary respiratory infections.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Rashi Srivastava
- Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education City, Sohna Road, Gurugram, Haryana, 122103, India
| | - Yiota Gregoriou
- Department of Biological Sciences, Faculty of Pure & Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sally A El-Zahaby
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Egypt
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, PO Box-17666, United Arab Emirates University, Al Ain, UAE
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
18
|
Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 2021. [DOI: https://doi.org/10.2217/nnm-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing burden of respiratory diseases caused by microbial infections poses an immense threat to global health. This review focuses on the various types of biofilms that affect the respiratory system and cause pulmonary infections, specifically bacterial biofilms. The article also sheds light on the current strategies employed for the treatment of such pulmonary infection-causing biofilms. The potential of nanocarriers as an effective treatment modality for pulmonary infections is discussed, along with the challenges faced during treatment and the measures that may be implemented to overcome these. Understanding the primary approaches of treatment against biofilm infection and applications of drug-delivery systems that employ nanoparticle-based approaches in the disruption of biofilms are of utmost interest which may guide scientists to explore the vistas of biofilm research while determining suitable treatment modalities for pulmonary respiratory infections.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Rashi Srivastava
- Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education City, Sohna Road, Gurugram, Haryana, 122103, India
| | - Yiota Gregoriou
- Department of Biological Sciences, Faculty of Pure & Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sally A El-Zahaby
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Egypt
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, PO Box-17666, United Arab Emirates University, Al Ain, UAE
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
19
|
Li X, Fu YN, Huang L, Liu F, Moriarty TF, Tao L, Wei Y, Wang X. Combating Biofilms by a Self-Adapting Drug Loading Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:6219-6226. [PMID: 35006889 DOI: 10.1021/acsabm.1c00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A bacterial biofilm is one of the main reasons that many diseases are difficult to cure. Herein, a teicoplanin (TPN)-loaded self-adapting chitosan-based hydrogel (CPH) system, called TPN-CPH, was prepared by encapsulating antibacterial TPN into CPH. This TPN-CPH can effectively combat preformed biofilms in vitro of Staphylococcus aureus (S. aureus). It has a good therapeutic effect on full-thickness cutaneous wounds in vivo of mice infected with biofilms. In addition, TPN-CPH can accelerate wound healing by self-adapting the wound and providing a moist environment. The operation process of TPN-CPH is simple, and no external stimulation such as light and heat is needed in the treatment process, making it more convenient for clinical application. Furthermore, this is a challenge to use self-adapting hydrogels to adapt the micro-size channels of biofilms. TPN-CPH provides a chitosan-based self-adapting hydrogel system for loading drugs to kill bacteria in biofilms, and thus it is promising for infection control.
Collapse
Affiliation(s)
- Xia Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ya-Nan Fu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
| | - Lifei Huang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | | | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
20
|
Cai YM, Zhang YD, Yang L. NO donors and NO delivery methods for controlling biofilms in chronic lung infections. Appl Microbiol Biotechnol 2021; 105:3931-3954. [PMID: 33937932 PMCID: PMC8140970 DOI: 10.1007/s00253-021-11274-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO), the highly reactive radical gas, provides an attractive strategy in the control of microbial infections. NO not only exhibits bactericidal effect at high concentrations but also prevents bacterial attachment and disperses biofilms at low, nontoxic concentrations, rendering bacteria less tolerant to antibiotic treatment. The endogenously generated NO by airway epithelium in healthy populations significantly contributes to the eradication of invading pathogens. However, this pathway is often compromised in patients suffering from chronic lung infections where biofilms dominate. Thus, exogenous supplementation of NO is suggested to improve the therapeutic outcomes of these infectious diseases. Compared to previous reviews focusing on the mechanism of NO-mediated biofilm inhibition, this review explores the applications of NO for inhibiting biofilms in chronic lung infections. It discusses how abnormal levels of NO in the airways contribute to chronic infections in cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and primary ciliary dyskinesia (PCD) patients and why exogenous NO can be a promising antibiofilm strategy in clinical settings, as well as current and potential in vivo NO delivery methods. KEY POINTS : • The relationship between abnormal NO levels and biofilm development in lungs • The antibiofilm property of NO and current applications in lungs • Potential NO delivery methods and research directions in the future.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ying-Dan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
21
|
Bacteriophage-Delivering Hydrogels: Current Progress in Combating Antibiotic Resistant Bacterial Infection. Antibiotics (Basel) 2021; 10:antibiotics10020130. [PMID: 33572929 PMCID: PMC7911734 DOI: 10.3390/antibiotics10020130] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance remains as an unresolved global challenge in the health care system, posing serious threats to global health. As an alternative to antibiotics, bacteriophage (phage) therapy is rising as a key to combating antibiotic-resistant bacterial infections. In order to deliver a phage to the site of infection, hydrogels have been formulated to incorporate phages, owing to its favorable characteristics in delivering biological molecules. This paper reviews the formulation of phage-delivering hydrogels for orthopedic implant-associated bone infection, catheter-associated urinary tract infection and trauma-associated wound infection, with a focus on the preparation methods, stability, efficacy and safety of hydrogels as phage carriers.
Collapse
|
22
|
Rouillard KR, Novak OP, Pistiolis AM, Yang L, Ahonen MJR, McDonald RA, Schoenfisch MH. Exogenous Nitric Oxide Improves Antibiotic Susceptibility in Resistant Bacteria. ACS Infect Dis 2021; 7:23-33. [PMID: 33291868 DOI: 10.1021/acsinfecdis.0c00337] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibiotic resistance in bacteria is a major global threat and a leading cause for healthcare-related morbidity and mortality. Resistant biofilm infections are particularly difficult to treat owing to the protective biofilm matrix, which decreases both antibiotic efficacy and clearance by the host. Novel antimicrobial agents that are capable of eradicating resistant infections are greatly needed to combat the rise of antibiotic-resistant bacteria, particularly in patients with cystic fibrosis who are frequently colonized by multidrug-resistant species. Our research group has developed nitric oxide-releasing biopolymers as alternatives to conventional antibiotics. Here, we show that nitric oxide acts as a broad-spectrum antibacterial agent while also improving the efficacy of conventional antibiotics when delivered sequentially. Alone, nitric oxide kills a broad range of bacteria in planktonic and biofilm form without engendering resistance. In combination with conventional antibiotics, nitric oxide increases bacterial susceptibility to multiple classes of antibiotics and slows the development of antibiotic resistance. We anticipate that the use of nitric oxide in combination with antibiotics may improve the outcome of patients with refractory infections, particularly those that are multidrug-resistant.
Collapse
Affiliation(s)
- Kaitlyn R. Rouillard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Olivia P. Novak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alex M. Pistiolis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mona J. R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Vast Therapeutics, Durham, North Carolina 27703, United States
| | | | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Vast Therapeutics, Durham, North Carolina 27703, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
23
|
He K, Shen Z, Chen Z, Zheng B, Cheng S, Hu J. Visible light-responsive micelles enable co-delivery of nitric oxide and antibiotics for synergistic antibiofilm applications. Polym Chem 2021. [DOI: 10.1039/d1py01137e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tetraphenylethylene (TPE) moieties have been employed as a light-absorbing antenna for the activation of photoresponsive N-nitrosamine derivatives, enabling visible light-triggered NO release and efficient biofilm dispersal.
Collapse
Affiliation(s)
- Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui, P. R. China
| | - Zhiqiang Shen
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Chen
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jinming Hu
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
24
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
25
|
Pieroni M. Nitric oxide-releasing cyclodextrins as biodegradable antibacterial scaffolds: a patent evaluation of US2019343869(A1). Expert Opin Ther Pat 2020; 30:901-905. [PMID: 32901572 DOI: 10.1080/13543776.2020.1822328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Antimicrobial resistance is one of the major scourges for health care worldwide; therefore, novel investigational approaches are needed to potentiate and preserve the current antibacterial arsenal. Cyclodextrins are known to improve the formulability of several different therapeutic agents. When functionalized with nitric oxide (NO) releasing groups, and suitably loaded with an antibacterial or antitumoral agents, they can exert additive activity, especially toward certain bacterial strains and cell cancer lines. AREAS COVERED US2019343869 describes NO-releasing cyclodextrins, a method for their synthesis, a composition that is based on them, and their application as anticancer or antibacterial agents, especially toward planktonic P. aeruginosa and the biofilm resulting from infection. Anticancer activity is measured against A549 cells. The amount of NO released is in the range of 0.5 μmol to 2.5 μmol per milligram of functionalized cyclodextrin with a half-life for NO release in a range of between about 0.7-4.2 hours. EXPERT OPINION The results support the use of NO-releasing cyclodextrins as a matrix for the delivery of antibacterial and anticancer drugs in a suitable formulation. However, antibacterial activity seems to be weak, and more focused studies are needed.
Collapse
Affiliation(s)
- Marco Pieroni
- P4T Group, University of Parma , Parma, Italy.,Department of Food and Drug, University of Parma , Parma, Italy
| |
Collapse
|