1
|
Saeed M, Alamri MA, Rashid MAR, Javed MR, Azeem F, Bashir Z, Alanzi AR, Muhseen ZT, Almusallam SY, Hussain K. Identification of novel inhibitors against VP40 protein of Marburg virus by integrating molecular modeling and dynamics approaches. J Biomol Struct Dyn 2025; 43:3942-3955. [PMID: 38178383 DOI: 10.1080/07391102.2023.2300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Marburg virus (MV) is a highly etiological agent of haemorrhagic fever in humans and has spread across the world. Its outbreaks caused a 23-90% human death rate. However, there are currently no authorized preventive or curative measures yet. VP40 is the MV matrix protein, which builds protein shell underneath the viral envelope and confers hallmark filamentous. VP40 alone is able to induce assembly and budding of filamentous virus-like particles (VLPs), which resemble authentic virions. As a result, this research is credited with clarifying the function of VP40 and leading to the discovery of new therapeutic targets effective in combating MV disease (MVD). Virtual screening, molecular docking and molecular dynamics (MD) simulation were used to find the putative active chemicals based on a 3D pharmacophore model of the protein's active site cavity. Initially, andrographidine-C, a potent inhibitor was selected for the development of the pharmacophore model. Later, a library of 30,000 compounds along with the andrographidine-C was docked against VP40 protein. Three best hits including avanafil, diuvaretin and macrourone were subjected to further MD simulation analysis, as these compounds had better binding affinities as compared to andrographidine-C. Furthermore, throughout the 100 ns simulations, the back bone of VP40 protein in presence of avanafil, diuvaretin and macrourone remained stable which was further validated by MM-PBSA analysis. Additionally, all of these compounds depict maximum drug-like properties. The predicted drugs based on the ligand, avanafil, diuvaretin and macrourone could be exploited and developed as an alternative or complementary therapy for the treatment of MVD.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarmina Bashir
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdullah R Alanzi
- Department of Pharmacogonsy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Shahad Youseff Almusallam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khadim Hussain
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Werner AD, Krapoth N, Norris MJ, Heine A, Klebe G, Saphire EO, Becker S. Development of a Crystallographic Screening to Identify Sudan Virus VP40 Ligands. ACS OMEGA 2024; 9:33193-33203. [PMID: 39100314 PMCID: PMC11292656 DOI: 10.1021/acsomega.4c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
The matrix protein VP40 of the highly pathogenic Sudan virus (genus Orthoebolavirus) is a multifunctional protein responsible for the recruitment of viral nucleocapsids to the plasma membrane and the budding of infectious virions. In addition to its role in assembly, VP40 also downregulates viral genome replication and transcription. VP40's existence in various homo-oligomeric states is presumed to underpin its diverse functional capabilities during the viral life cycle. Given the absence of licensed therapeutics targeting the Sudan virus, our study focused on inhibiting VP40 dimers, the structural precursors to critical higher-order oligomers, as a novel antiviral strategy. We have established a crystallographic screening pipeline for the identification of small-molecule fragments capable of binding to VP40. Dimeric VP40 of the Sudan virus was recombinantly expressed in bacteria, purified, crystallized, and soaked in a solution of 96 different preselected fragments. Salicylic acid was identified as a crystallographic hit with clear electron density in the pocket between the N- and the C-termini of the VP40 dimer. The binding interaction is predominantly coordinated by amino acid residues leucine 158 (L158) and arginine 214 (R214), which are key in stabilizing salicylic acid within the binding pocket. While salicylic acid displayed minimal impact on the functional aspects of VP40, we delved deeper into characterizing the druggability of the identified binding pocket. We analyzed the influence of residues L158 and R214 on the formation of virus-like particles and viral RNA synthesis. Site-directed mutagenesis of these residues to alanine markedly affected both VP40's budding activity and its effect on viral RNA synthesis, underscoring the potential of the salicylic acid binding pocket as a drug target. In summary, our findings lay the foundation for structure-guided drug design to provide lead compounds against Sudan virus VP40.
Collapse
Affiliation(s)
| | - Nils Krapoth
- Institute
for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany
- Institut
für Molekulare Biologie gGmbH, D-55128 Mainz, Rheinland-Pfalz, Germany
| | - Michael J. Norris
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Andreas Heine
- Institute
of Pharmaceutical Chemistry, University
of Marburg, D-35032 Marburg, Hessen, Germany
| | - Gerhard Klebe
- Institute
of Pharmaceutical Chemistry, University
of Marburg, D-35032 Marburg, Hessen, Germany
| | | | - Stephan Becker
- Institute
for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany
- Partnersite
Giessen-Marburg-Langen, German Centre for
Infection Research, D-35043 Marburg, Hessen, Germany
| |
Collapse
|
3
|
Liu Y, Zhang X, Zhang P, He T, Zhang W, Ma D, Li P, Chen J. A high-throughput Gaussia luciferase reporter assay for screening potential gasdermin E activators against pancreatic cancer. Acta Pharm Sin B 2023; 13:4253-4272. [PMID: 37799380 PMCID: PMC10548051 DOI: 10.1016/j.apsb.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 10/07/2023] Open
Abstract
It is discovered that activated caspase-3 tends to induce apoptosis in gasdermin E (GSDME)-deficient cells, but pyroptosis in GSDME-sufficient cells. The high GSDME expression and apoptosis resistance of pancreatic ductal adenocarcinoma (PDAC) cells shed light on another attractive strategy for PDAC treatment by promoting pyroptosis. Here we report a hGLuc-hGSDME-PCA system for high-throughput screening of potential GSDME activators against PDAC. This screening system neatly quantifies the oligomerization of GSDME-N to characterize whether pyroptosis occurs under the stimulation of chemotherapy drugs. Based on this system, ponatinib and perifosine are screened out from the FDA-approved anti-cancer drug library containing 106 compounds. Concretely, they exhibit the most potent luminescent activity and cause drastic pyroptosis in PDAC cells. Further, we demonstrate that perifosine suppresses pancreatic cancer by promoting pyroptosis via caspase-3/GSDME pathway both in vitro and in vivo. Collectively, this study reveals the great significance of hGLuc-hGSDME-PCA in identifying compounds triggering GSDME-dependent pyroptosis and developing promising therapeutic agents for PDAC.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tingting He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
A hybrid resampling algorithms SMOTE and ENN based deep learning models for identification of Marburg virus inhibitors. Future Med Chem 2022; 14:701-715. [PMID: 35393862 DOI: 10.4155/fmc-2021-0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Marburg virus (MARV) is a sporadic outbreak of a zoonotic disease that causes lethal hemorrhagic fever in humans. We propose a deep learning model with resampling techniques and predict the inhibitory activity of MARV from unknown compounds in the virtual screening process. Methodology & results: We applied resampling techniques to solve the imbalanced data problem. The classifier model comparisons revealed that the hybrid model of synthetic minority oversampling technique - edited nearest neighbor and artificial neural network (SMOTE-ENN + ANN) achieved better classification performance with 95% overall accuracy. The trained SMOTE-ENN+ANN hybrid model predicted as lead molecules; 25 out of 87,043 from ChemDiv, four out of 340 from ChEMBL anti-viral library, three out of 918 from Phytochemical database, and seven out of 419 from Natural products from NCI divsetIV, and 214 out of 1,12,267 from Natural compounds ZINC database for MARV. Conclusion: Our studies reveal that the proposed SMOTE-ENN + ANN hybrid model can improve overall accuracy more effectively and predict new lead molecules against MARV.
Collapse
|
5
|
Hasan M, Mia MM, Islam MM, Hasan Saraf MS, Islam MS. A computerized pharmaceutical repurposing approach reveals Semicochliodinol B synthesized from Chrysosporium merdarium as a viable therapeutic contender for Marburg virus's VP35 and VP40 proteins. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|