1
|
Dierikx TH, Visser DH, de Meij T, Versalovic J, Leeflang MM, Cooper C, Pammi M. Molecular assays for the diagnosis of sepsis in neonates: a diagnostic test accuracy review. Cochrane Database Syst Rev 2025; 3:CD011926. [PMID: 40105375 PMCID: PMC11921763 DOI: 10.1002/14651858.cd011926.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BACKGROUND Microbial cultures for diagnosis of neonatal sepsis have low sensitivity and reporting delay. Advances in molecular microbiology have fostered new molecular assays that are rapid and may improve neonatal outcomes. OBJECTIVES To assess the diagnostic accuracy of various molecular methods for the diagnosis of culture-positive bacterial and fungal sepsis in neonates and to explore heterogeneity among studies by analyzing subgroups classified by gestational age and type of sepsis onset and compare molecular tests with one another. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and trial registries in August 2023. We checked reference lists of included studies and systematic reviews where subject matter related to the intervention or population examined in this review. SELECTION CRITERIA We included studies that were prospective or retrospective, cohort or cross-sectional design, which evaluated molecular assays (index test) in neonates with suspected sepsis in comparison with microbial cultures (reference standard). DATA COLLECTION AND ANALYSIS Two review authors independently screened studies, extracted data and assessed the methodological quality of the studies. We performed meta-analyses using the bivariate model and entered data into Review Manager. MAIN RESULTS Seventy-four studies were eligible for inclusion, of which 68 studies provided data for meta-analysis. The total number of participants was 14,309 (1328 infants who were culture-positive and 12,981 infants who were culture-negative) from 68 studies that were included in the meta-analysis. The summary estimate of sensitivity was 0.91 (95% confidence interval (CI) 0.85 to 0.95) and of specificity was 0.88 (95% CI 0.83 to 0.92) (low-certainty evidence). We explored heterogeneity by subgroup analyses of type of test, gestational age, type of sepsis onset and prevalence of sepsis. We found insufficient explanations for the heterogeneity (low- to very low-certainty evidence). Sensitivity analyses including studies that analyzed blood samples, using good methodology and those that did not use multiple samples from the same participant revealed similar results (low-certainty evidence). AUTHORS' CONCLUSIONS Molecular assays have the advantage of producing rapid results and have moderate diagnostic accuracy. Molecular assays may prevent overuse of antibiotics in neonates with suspected sepsis. The efficacy and cost-effectiveness of these molecular assays should be evaluated using randomized trials comparing molecular assays as an add-on test versus conventional methods without the add-on test in neonates with suspected sepsis.
Collapse
Affiliation(s)
- Thomas H Dierikx
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Pediatric Gastroenterology, Amsterdam UMC, Amsterdam, Netherlands
| | - Douwe H Visser
- Department of Neonatology, Amsterdam UMC, Amsterdam, Netherlands
| | - Tim de Meij
- Department of Pediatric Gastroenterology, Amsterdam UMC, Amsterdam, Netherlands
| | - James Versalovic
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Chris Cooper
- Cochrane Neonatal, Vermont Oxford Network, Vermont, USA
- Bristol Medical School, Bristol, UK
| | - Mohan Pammi
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Shen S, Wang W, Ma Y, Wang S, Zhang S, Cai X, Chen L, Zhang J, Li Y, Wu X, Wei J, Zhao Y, Huang A, Niu S, Wang D. Affinity molecular assay for detecting Candida albicans using chitin affinity and RPA-CRISPR/Cas12a. Nat Commun 2024; 15:9304. [PMID: 39468064 PMCID: PMC11519397 DOI: 10.1038/s41467-024-53693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Invasive fungal infections (IFIs) pose a significant threat to immunocompromised individuals, leading to considerable morbidity and mortality. Prompt and accurate diagnosis is essential for effective treatment. Here we develop a rapid molecular diagnostic method that involves three steps: fungal enrichment using affinity-magnetic separation (AMS), genomic DNA extraction with silicon hydroxyl magnetic beads, and detection through a one-pot system. This method, optimized to detect 30 CFU/mL of C. albicans in blood and bronchoalveolar lavage (BAL) samples within 2.5 h, is approximately 100 times more sensitive than microscopy-based staining. Initial validation using clinical samples showed 93.93% sensitivity, 100% specificity, and high predictive values, while simulated tests demonstrated 95% sensitivity and 100% specificity. This cost-effective, highly sensitive technique offers potential for use in resource-limited clinical settings and can be easily adapted to differentiate between fungal species and detect drug resistance.
Collapse
Affiliation(s)
- Shimei Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory Medicine, Chongqing Red Cross Hospital (Jiangbei District People's Hospital), Chongqing, China
| | - Wen Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, China
| | - Yuanyan Ma
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shilei Wang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shaocheng Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jin Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yalan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoli Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yanan Zhao
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Deqiang Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, Chongqing, China.
| |
Collapse
|
3
|
Baltogianni M, Giapros V, Dermitzaki N. Recent Challenges in Diagnosis and Treatment of Invasive Candidiasis in Neonates. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1207. [PMID: 39457172 PMCID: PMC11506641 DOI: 10.3390/children11101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Invasive Candida infections represent a significant cause of morbidity and mortality in the neonatal intensive care unit (NICU), particularly among preterm and low birth weight neonates. The nonspecific clinical presentation of invasive candidiasis, resembling that of bacterial sepsis with multiorgan involvement, makes the diagnosis challenging. Given the atypical clinical presentation and the potential detrimental effects of delayed treatment, empirical treatment is often initiated in cases with high clinical suspicion. This underscores the need to develop alternative laboratory methods other than cultures, which are known to have low sensitivity and a prolonged detection time, to optimize therapeutic strategies. Serum biomarkers, including mannan antigen/anti-mannan antibody and 1,3-β-D-glucan (BDG), both components of the yeast cell wall, a nano-diagnostic method utilizing T2 magnetic resonance, and Candida DNA detection by PCR-based techniques have been investigated as adjuncts to body fluid cultures and have shown promising results in improving diagnostic efficacy and shortening detection time in neonatal populations. This review aims to provide an overview of the diagnostic tools and the current management strategies for invasive candidiasis in neonates. Timely and accurate diagnosis followed by targeted antifungal treatment can significantly improve the survival and outcome of neonates affected by Candida species.
Collapse
Affiliation(s)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (M.B.); (N.D.)
| | | |
Collapse
|
4
|
Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, Imaging, and Therapeutic Strategies Endowing by Conjugate Polymers for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310032. [PMID: 38316396 DOI: 10.1002/adma.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Conjugated polymers (CPs) have promising applications in biomedical fields, such as disease monitoring, real-time imaging diagnosis, and disease treatment. As a promising luminescent material with tunable emission, high brightness and excellent stability, CPs are widely used as fluorescent probes in biological detection and imaging. Rational molecular design and structural optimization have broadened absorption/emission range of CPs, which are more conductive for disease diagnosis and precision therapy. This review provides a comprehensive overview of recent advances in the application of CPs, aiming to elucidate their structural and functional relationships. The fluorescence properties of CPs and the mechanism of detection signal amplification are first discussed, followed by an elucidation of their emerging applications in biological detection. Subsequently, CPs-based imaging systems and therapeutic strategies are illustrated systematically. Finally, recent advancements in utilizing CPs as electroactive materials for bioelectronic devices are also investigated. Moreover, the challenges and outlooks of CPs for precision medicine are discussed. Through this systematic review, it is hoped to highlight the frontier progress of CPs and promote new breakthroughs in fundamental research and clinical transformation.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Tang Z, Wang H, Liu Y, Wang C, Li X, Yang Q. Current status and new experimental diagnostic methods of invasive fungal infections after hematopoietic stem cell transplantation. Arch Microbiol 2024; 206:237. [PMID: 38678508 DOI: 10.1007/s00203-024-03905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
Invasive fungal infections (IFIs) are common and life-threatening complications in post-hematopoietic stem cell transplantation (post-HSCT) recipients, Severe IFIs can lead to systemic infection and organ damage, which results in high mortality in HSCT recipients. With the development of the field of fungal infection diagnosis, more and more advanced non-culture diagnostic tools have been developed, such as glip biosensors, metagenomic next-generation sequencing, Magnetic Nanoparticles and Identified Using SERS via AgNPs+ , and artificial intelligence-assisted diagnosis. The advanced diagnostic approaches contribute to the success of HSCT and improve the overall survival of post-HSCT leukemia patients by supporting therapeutical decisions. This review provides an overview of the characteristics of two high-incidence IFIs in post-HSCT recipients and discusses some of the recently developed IFI detection technologies. Additionally, it explores the potential application of cationic conjugated polymer fluorescence resonance energy transfer (CCP-FRET) technology for IFI detection. The aim is to offer insights into selecting appropriate IFI detection methods and gaining an understanding of novel fungal diagnostic approaches in laboratory settings.
Collapse
Affiliation(s)
- Zhenhua Tang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - HaiTao Wang
- Department of Hematology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100071, China
| | - Yuankai Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xinye Li
- Lanzhou Petrochemical General Hospital (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Gansu, 730060, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Li H, Li Y, Gui C, Chen D, Chen L, Luo L, Huang G, Yuan Y, He R, Xia F, Wang J. Bare glassy nanopore for length-resolution reading of PCR amplicons from various pathogenic bacteria and viruses. Talanta 2023; 256:124275. [PMID: 36701856 DOI: 10.1016/j.talanta.2023.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/16/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
In this study, it is confirmed that without addition of organic solvent and embedding polymer hydrogel into glass nanopore, bare glass nanopore can faithfully measure various lengths of DNA duplexes from 200 to 3000 base pairs with 200 base pairs resolution, showing well-separated peak amplitudes of blockage currents. Furthermore, motivated by this readout capability of duplex DNA, amplicons from Polymerase Chain Reaction (PCR) amplification are straightforwardly discriminated by bare glassy nanopore without fluorescent labeling. Except simultaneous discrimination of up to 7 different segments of the same lambda genome, various pathogenic bacteria and viruses including SARS-CoV-2 and its mutants in clinical samples can be discriminated at high resolution. Moreover, quantitative measurement of PCR amplicons is obtained with detection range spanning from 0.75 aM to 7.5 pM and detection limit of 7.5 aM, which reveals that bare glass nanopore can faithfully disclose PCR results without any extra labeling.
Collapse
Affiliation(s)
- Huizhen Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Yunhui Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Cenlin Gui
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Lanfang Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Rong He
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China.
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
7
|
He B, Yang Q. Updates in Laboratory Identification of Invasive Fungal Infection in Neonates. Microorganisms 2023; 11:1001. [PMID: 37110424 PMCID: PMC10145787 DOI: 10.3390/microorganisms11041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Invasive fungal infection (IFI) in immunocompromised neonates is significantly associated with high morbidity and mortality and has become the third most common infection in Neonatal Intensive Care Units. The early diagnosis of IFI for neonatal patients is difficult because of the lack of specific symptoms. The traditional blood culture remains the gold standard in clinical diagnosis for neonatal patients but it requires a long duration, which delays treatment initiation. Detections of fungal cell-wall components are developed for early diagnosis but the diagnostic accuracy in neonates needs to be improved. PCR-based laboratory methods, such as real-time PCR, droplet digital PCR, and the cationic conjugated polymer fluorescence resonance energy transfer (CCP-FRET) system, distinguish the infected fungal species by their specific nucleic acids and show a high sensitivity and specificity. Particularly, the CCP-FRET system, which contains a cationic conjugated polymer (CCP) fluorescent probe and pathogen-specific DNA labeled with fluorescent dyes, could identify multiple infections simultaneously. In the CCP-FRET system, the CCP and fungal DNA fragments can self-assemble into a complex with an electrostatic interaction and the CCP triggers the FRET effect under ultraviolet light to make the infection visible. Here, we summarize the recent laboratory methods for neonatal IFI identification and provide a new perspective for early clinical fungal diagnosis.
Collapse
Affiliation(s)
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
8
|
Conjugated polymer materials for detection and discrimination of pathogenic microorganisms: Guarantee of biosafety. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|