1
|
Fakhoury NE, Mansour S, Abdel-Halim M, Hamed MM, Empting M, Boese A, Loretz B, Lehr CM, Tammam SN. Nanoparticles in liposomes: a platform for increased antibiotic selectivity in multidrug resistant bacteria in respiratory tract infections. Drug Deliv Transl Res 2025; 15:1193-1209. [PMID: 39048783 PMCID: PMC11870967 DOI: 10.1007/s13346-024-01662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Antibiotic resistance is a cause of serious illness and death, originating often from insufficient permeability into gram-negative bacteria. Nanoparticles (NP) can increase antibiotic delivery in bacterial cells, however, may as well increase internalization in mammalian cells and toxicity. In this work, NP in liposome (NP-Lip) formulations were used to enhance the selectivity of the antibiotics (3C and tobramycin) and quorum sensing inhibitor (HIPS-1635) towards Pseudomonas aeruginosa by fusing with bacterial outer membranes and reducing uptake in mammalian cells due to their larger size. Poly (lactic-co-glycolic) acid NPs were prepared using emulsion solvent evaporation and incorporated in larger liposomes. Cytotoxicity and uptake studies were conducted on two lung cell lines, Calu-3 and H460. NP-Lip showed lower toxicity and uptake in both cell lines. Then formulations were investigated for suitability for oral inhalation. The deposition of NP and NP-Lip in the lungs was assessed by next generation impactor and corresponded to 75% and 45% deposition in the terminal bronchi and the alveoli respectively. Colloidal stability and mucus-interaction studies were conducted. NP-Lip showed higher diffusion through mucus compared to NPs with the use of nanoparticle tracking analyzer. Moreover, the permeation of delivery systems across a liquid-liquid interface epithelial barrier model of Calu-3 cells indicated that NP-Lip could cause less systemic toxicity upon in-vivo like administration by aerosol deposition. Monoculture and Pseudomonas aeruginosa biofilm with Calu-3 cells co-culture experiments were conducted, NP-Lip achieved highest toxicity towards bacterial biofilms and least toxicity % of the Calu-3 cells. Therefore, the NP- liposomal platform offers a promising approach for enhancing antibiotic selectivity and treating pulmonary infections.
Collapse
Affiliation(s)
- Nathalie E Fakhoury
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt.
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Annette Boese
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| |
Collapse
|
2
|
Grassi L, Crabbé A. Recreating chronic respiratory infections in vitro using physiologically relevant models. Eur Respir Rev 2024; 33:240062. [PMID: 39142711 PMCID: PMC11322828 DOI: 10.1183/16000617.0062-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the need for effective treatments against chronic respiratory infections (often caused by pathogenic biofilms), only a few new antimicrobials have been introduced to the market in recent decades. Although different factors impede the successful advancement of antimicrobial candidates from the bench to the clinic, a major driver is the use of poorly predictive model systems in preclinical research. To bridge this translational gap, significant efforts have been made to develop physiologically relevant models capable of recapitulating the key aspects of the airway microenvironment that are known to influence infection dynamics and antimicrobial activity in vivo In this review, we provide an overview of state-of-the-art cell culture platforms and ex vivo models that have been used to model chronic (biofilm-associated) airway infections, including air-liquid interfaces, three-dimensional cultures obtained with rotating-wall vessel bioreactors, lung-on-a-chips and ex vivo pig lungs. Our focus is on highlighting the advantages of these infection models over standard (abiotic) biofilm methods by describing studies that have benefited from these platforms to investigate chronic bacterial infections and explore novel antibiofilm strategies. Furthermore, we discuss the challenges that still need to be overcome to ensure the widespread application of in vivo-like infection models in antimicrobial drug development, suggesting possible directions for future research. Bearing in mind that no single model is able to faithfully capture the full complexity of the (infected) airways, we emphasise the importance of informed model selection in order to generate clinically relevant experimental data.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
3
|
Aparicio-Blanco J, Vishwakarma N, Lehr CM, Prestidge CA, Thomas N, Roberts RJ, Thorn CR, Melero A. Antibiotic resistance and tolerance: What can drug delivery do against this global threat? Drug Deliv Transl Res 2024; 14:1725-1734. [PMID: 38341386 PMCID: PMC11052818 DOI: 10.1007/s13346-023-01513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/12/2024]
Abstract
Antimicrobial resistance and tolerance (AMR&T) are urgent global health concerns, with alarmingly increasing numbers of antimicrobial drugs failing and a corresponding rise in related deaths. Several reasons for this situation can be cited, such as the misuse of traditional antibiotics, the massive use of sanitizing measures, and the overuse of antibiotics in agriculture, fisheries, and cattle. AMR&T management requires a multifaceted approach involving various strategies at different levels, such as increasing the patient's awareness of the situation and measures to reduce new resistances, reduction of current misuse or abuse, and improvement of selectivity of treatments. Also, the identification of new antibiotics, including small molecules and more complex approaches, is a key factor. Among these, novel DNA- or RNA-based approaches, the use of phages, or CRISPR technologies are some potent strategies under development. In this perspective article, emerging and experienced leaders in drug delivery discuss the most important biological barriers for drugs to reach infectious bacteria (bacterial bioavailability). They explore how overcoming these barriers is crucial for producing the desired effects and discuss the ways in which drug delivery systems can facilitate this process.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, 482003, Madhya Pradesh, India
| | - Claus-Michael Lehr
- Department Drug Delivery across Biological Barriers (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123, Saarbrücken, Germany
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Chelsea R Thorn
- Biotherapeutics Pharmaceutical Research and Development, Pfizer, Inc., 1 Burtt Road, Andover, MA, 01810, USA.
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
4
|
Porzio E, Andrenacci D, Manco G. Thermostable Lactonases Inhibit Pseudomonas aeruginosa Biofilm: Effect In Vitro and in Drosophila melanogaster Model of Chronic Infection. Int J Mol Sci 2023; 24:17028. [PMID: 38069351 PMCID: PMC10707464 DOI: 10.3390/ijms242317028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Pseudomonas aeruginosa is one of the six antimicrobial-resistant pathogens known as "ESKAPE" that represent a global threat to human health and are considered priority targets for the development of novel antimicrobials and alternative therapeutics. The virulence of P. aeruginosa is regulated by a four-chemicals communication system termed quorum sensing (QS), and one main class of QS signals is termed acylhomoserine lactones (acyl-HSLs), which includes 3-Oxo-dodecanoil homoserine lactone (3-Oxo-C12-HSL), which regulates the expression of genes implicated in virulence and biofilm formation. Lactonases, like Paraoxonase 2 (PON2) from humans and the phosphotriesterase-like lactonases (PLLs) from thermostable microorganisms, are able to hydrolyze acyl-HSLs. In this work, we explored in vitro and in an animal model the effect of some lactonases on the production of Pseudomonas virulence factors. This study presents a model of chronic infection in which bacteria were administered by feeding, and Drosophila adults were treated with enzymes and the antibiotic tobramycin, alone or in combination. In vitro, we observed significant effects of lactonases on biofilm formation as well as effects on bacterial motility and the expression of virulence factors. The treatment in vivo by feeding with the lactonase SacPox allowed us to significantly increase the biocidal effect of tobramycin in chronic infection.
Collapse
Affiliation(s)
- Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza” Unit of Bologna, 40136 Bologna, Italy
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Abstracts from The International Society for Aerosols in Medicine. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37906031 DOI: 10.1089/jamp.2023.ab02.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
|
6
|
Ibrahim I, Ayariga JA, Xu J, Adebanjo A, Robertson BK, Samuel-Foo M, Ajayi OS. CBD resistant Salmonella strains are susceptible to epsilon 34 phage tailspike protein. Front Med (Lausanne) 2023; 10:1075698. [PMID: 36960333 PMCID: PMC10028193 DOI: 10.3389/fmed.2023.1075698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pandrug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages being the natural predators of pathogenic bacteria, are inevitably categorized as "human friends", thus fulfilling the adage that "the enemy of my enemy is my friend". Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tailspike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tailspike protein to cause bacteria membrane disruption, and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability whereas the monotreatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption, and dehydrogenase inactivation by the protein. The results of this work provides an interesting background to highlight the crucial role phage protein such as E34 TSP could play in pathogenic bacterial control.
Collapse
Affiliation(s)
- Iddrisu Ibrahim
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
- *Correspondence: Joseph Atia Ayariga,
| | - Junhuan Xu
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Ayomide Adebanjo
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Boakai K. Robertson
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
- Olufemi S. Ajayi,
| |
Collapse
|
7
|
Shapiro RL, DeLong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev 2022; 191:114543. [PMID: 36208729 PMCID: PMC9940824 DOI: 10.1016/j.addr.2022.114543] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Departments of Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|