1
|
Touati A, Ibrahim NA, Idres T. Disarming Staphylococcus aureus: Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence. Pathogens 2025; 14:386. [PMID: 40333163 PMCID: PMC12030135 DOI: 10.3390/pathogens14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Staphylococcus aureus is a formidable pathogen notorious for its antibiotic resistance and diverse virulence mechanisms, including toxin production, biofilm formation, and immune evasion. This article explores innovative anti-virulence strategies to disarm S. aureus by targeting critical virulence factors without exerting bactericidal pressure. Key approaches include inhibiting adhesion and biofilm formation, neutralizing toxins, disrupting quorum sensing (e.g., Agr system inhibitors), and blocking iron acquisition pathways. Additionally, interventions targeting two-component regulatory systems are highlighted. While promising, challenges such as strain variability, biofilm resilience, pharmacokinetic limitations, and resistance evolution underscore the need for combination therapies and advanced formulations. Integrating anti-virulence strategies with traditional antibiotics and host-directed therapies offers a sustainable solution to combat multidrug-resistant S. aureus, particularly methicillin-resistant strains (MRSA), and mitigate the global public health crisis.
Collapse
Affiliation(s)
- Abdelaziz Touati
- Laboratory of Microbial Ecology, FSNV, University of Bejaia, Bejaia 06000, Algeria
| | - Nasir Adam Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Takfarinas Idres
- Laboratory for Livestock Animal Production and Health Research, Rabie Bouchama National Veterinary School of Algiers, Issad ABBAS Street, BP 161 Oued Smar, Algiers 16059, Algeria;
| |
Collapse
|
2
|
Xu J, Wei Z, Fang W, Wu J, Wang Y, Chen S. KKL-35 inhibits growth of Staphylococcus aureus by systematically changing bacterial phenotypes. Arch Microbiol 2024; 206:350. [PMID: 38995446 DOI: 10.1007/s00203-024-04079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
KKL-35 is a new oxadiazole compound with potent broad-spectrum antibacterial activity against a number of gram-positive and gram-negative bacteria. However, its influences on bacterial growth are unclear. This study is to investigate phenotypic changes of Staphylococcus aureus (SA) caused by KKL-35 and evaluate antibacterial activity of combinations of KKL-35 with 7 class of antibiotics available in medical facilities. KKL-35-treated SA showed significantly lower survival under stresses of NaCl and H2O2 than DMSO (21.03 ± 2.60% vs. 68.21 ± 5.31% for NaCl, 4.91 ± 3.14% vs. 74.78 ± 2.88% for H2O2). UV exposure significantly decreased survival of SA treated with KKL-35 than DMSO-treated ones (23.91 ± 0.71% vs. 55.45 ± 4.70% for 4.2 J/m2, 12.80 ± 1.03% vs. 31.99 ± 5.99% for 7.0 J/m2, 1.52 ± 0.63% vs. 6.49 ± 0.51% for 14.0 J/m2). KKL-35 significantly decreased biofilm formation (0.47 ± 0.12 vs. 1.45 ± 0.21) and bacterial survival in the serum resistance assay (42.27 ± 2.77% vs. 78.31 ± 5.64%) than DMSO. KKL-35 significantly decreased ethidium bromide uptake and efflux, as well as the cell membrane integrity. KKL-35 had low cytotoxicity and low propensity for resistance. KKL-35 inhibited SA growth in concentration-independent and time-dependent manners, and showed additivity when combined with the majority class of available antibiotics. Antibiotic combinations of KKL-35 with ciprofloxacin, rifampicin, or linezolid significantly decreased bacterial loads than the most active antibiotic in the corresponding combination. Thus, KKL-35 inhibits growth of SA by decreasing bacterial environmental adaptations, biofilm formation, membrane uptake and efflux, as well as increasing antibiotic sensitivity. Its potent antibacterial activity, low cytotoxicity, low propensity for resistance, and wide choices in antibiotic combinations make KKL-35 a promising leading compound to design new antibiotics in monotherapies and combination therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Jie Xu
- Department of Laboratory Medicine, The PLA 307 Clinical College, 5th Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zilan Wei
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wendong Fang
- Department of Laboratory Medicine, The PLA 307 Clinical College, 5th Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiahui Wu
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | | | - Shuiping Chen
- Department of Laboratory Medicine, The PLA 307 Clinical College, 5th Clinical Medical College of Anhui Medical University, Beijing, China.
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China.
- Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
3
|
Benin BM, Kharel R, Hillyer T, Sun C, Cmolik A, Kuebler T, Sham YY, Bonomo R, Mighion JD, Shin WS. Development of non-β-Lactam covalent allosteric inhibitors targeting PBP2a in Methicillin-Resistant Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596450. [PMID: 38853829 PMCID: PMC11160701 DOI: 10.1101/2024.05.29.596450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive bacterial pathogen, continues to pose a serious threat to the current public health system in our society. The high level of resistance to β-lactam antibiotics in MRSA is attributed to the expression of penicillin-binding protein 2a (PBP2a), which catalyzes cell wall cross-linking. According to numerous research reports, the activity of the PBP2a protein is known to be regulated by an allosteric site distinct from the active site where cell wall cross-linking occurs. Here, we conducted a screening of 113 compounds containing a 1,3,4-oxadiazole core to design new covalent inhibitors targeting the allosteric site of PBP2a and establish their structural-activity relationship. The stereochemically selective synthesis of sulfonyl oxadiazole compounds identified in the initial screening resulted in a maximum eightfold enhancement in cell inhibition activity. The sulfonyl oxadiazole-based compounds formulated as PEG-based ointments, with low toxicity test results on human cells (CC 50 : >78μM), demonstrated potent antimicrobial effects not only in a mouse skin wound infection model but also against oxacillin-resistant clinical isolate MRSA (IC 50 ≈ 1μM), as evidenced by the results. Furthermore, additional studies utilizing LC-MS/MS and in-silico approaches clearly support the allosteric site covalent binding mechanism through the nucleophilic aromatic substitution (S N Ar) reaction, as well as its association with the closure of the major active site of PBP2a.
Collapse
|
4
|
Krátký M. Novel sulfonamide derivatives as a tool to combat methicillin-resistant Staphylococcus aureus. Future Med Chem 2024; 16:545-562. [PMID: 38348480 DOI: 10.4155/fmc-2023-0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Increasing resistance in Staphylococcus aureus has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant Staphylococcus aureus [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only N-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active in vivo. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
de Oliveira PV, de Santana Lira RL, de Abreu Lima R, Mendes YC, Martins AB, de Melo BDO, Goiano MF, Filho RL, de Farias Nunes FBB, Aliança ASDS, Firmo WDCA, Carvalho RC, Zagminan A, de Sousa EM. Bibliometric Review on New Possibilities of Antimycobacterial Agents: Exploring Siderophore Desferrioxamine's Applications as an Antimicrobial Agent. Pharmaceuticals (Basel) 2023; 16:1335. [PMID: 37765143 PMCID: PMC10536058 DOI: 10.3390/ph16091335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacteria cause tuberculosis and other serious diseases. Understanding their mechanisms of resistance to our immune system and exploring novel drugs are critical strategies to combat infections. A bibliometric analysis was performed to identify publication trends and critical research areas in the field of the antimicrobial activity of desferrioxamine. A total of twenty-four publications on the topic, from 2012 to 2023, were retrieved from databases including Web of Science, Scopus, PubMed, and Embase, using specific keywords. The quality of the publications was assessed using impact and productivity metrics, with an average annual publication rate of 2.1 articles. The United States emerged as the most productive country, with medicine (23.4%, 11 publications) and biochemistry, genetics, and molecular biology (21.3%, 10 publications) as the top research fields. The five most cited publications accounted for 672 citations, with a relatively low h-index (11:11). In conclusion, there has been a lack of publications on this topic in the last decade. The United States dominates production and publication in this area, and there appears to be limited exchange of knowledge, ideas, and technology within the field. Therefore, fostering international cooperation through funding is essential to facilitate further research and development of desferrioxamine-related studies.
Collapse
Affiliation(s)
- Patrícia Vieira de Oliveira
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
| | - Roseane Lustosa de Santana Lira
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Rafael de Abreu Lima
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Yasmim Costa Mendes
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
| | - Antenor Bezerra Martins
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Bruna de Oliveira de Melo
- Graduate Program in Biodiversity and Biotechnology—BIONORTE Amazonian Network, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
| | | | - Rivaldo Lira Filho
- Graduate Program in Nursing, St. Therese College—CEST, São Luís 65045-180, Brazil;
| | | | - Amanda Silva dos Santos Aliança
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Wellyson da Cunha Araújo Firmo
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Adrielle Zagminan
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Eduardo Martins de Sousa
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
- Graduate Program in Biodiversity and Biotechnology—BIONORTE Amazonian Network, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
| |
Collapse
|