1
|
Dhiman S, Ramirez D, Li Y, Kumar A, Arthur G, Schweizer F. Chimeric Tobramycin-Based Adjuvant TOB-TOB-CIP Potentiates Fluoroquinolone and β-Lactam Antibiotics against Multidrug-Resistant Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:864-885. [PMID: 36917096 DOI: 10.1021/acsinfecdis.2c00549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
According to the World Health Organization, antibiotic resistance is a global health threat. Of particular importance are infections caused by multidrug-resistant Gram-negative bacteria including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa for which limited treatment options exist. Multiple and simultaneously occurring resistance mechanisms including outer membrane impermeability, overexpression of efflux pumps, antibiotic-modifying enzymes, and modification of genes and antibiotic targets have made antibiotic drug development more difficult against these pathogens. One strategy to cope with these challenges is the use of outer membrane permeabilizers that increase the intracellular concentration of antibiotics when used in combination. In some circumstances, this approach can rescue antibiotics from resistance or repurpose currently marketed antibiotics. Tobramycin-based hybrid antibiotic adjuvants that combine two outer membrane-active components have been previously shown to potentiate antibiotics by facilitating transit through the outer membrane, resulting in increased antibiotic accumulation within the cell. Herein, we extended the concept of tobramycin-based hybrid antibiotic adjuvants to tobramycin-based chimeras by engineering up to three different membrane-active antibiotic warheads such as tobramycin, 1-(1-naphthylmethyl)-piperazine, ciprofloxacin, and cyclam into a central 1,3,5-triazine scaffold. Chimera 4 (TOB-TOB-CIP) consistently synergized with ciprofloxacin, levofloxacin, and moxifloxacin against wild-type and fluoroquinolone-resistant P. aeruginosa. Moreover, the susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached using the triple combination of chimera 4 with ceftazidime/avibactam, aztreonam/avibactam, and imipenem/relebactam, respectively, against β-lactamase-harboring P. aeruginosa. Our findings demonstrate that tobramycin-based chimeras form a novel class of antibiotic potentiators capable of restoring the activity of antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg R3E 0J9, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| |
Collapse
|
2
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
3
|
Dewangan RP, Verma DP, Verma NK, Gupta A, Pant G, Mitra K, Habib S, Ghosh JK. Spermine-Conjugated Short Proline-Rich Lipopeptides as Broad-Spectrum Intracellular Targeting Antibacterial Agents. J Med Chem 2022; 65:5433-5448. [PMID: 35297625 DOI: 10.1021/acs.jmedchem.1c01809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Toward the design of new proline-rich peptidomimetics, a short peptide segment, present in several proline-rich antimicrobial peptides (AMPs), was selected. Fatty acids of varying lengths and spermine were conjugated at the N- and C-terminals of the peptide, respectively. Spermine-conjugated lipopeptides, C10-PR-Spn and C12-PR-Spn, exhibited minimum inhibitory concentrations within 1.5-6.2 μM against the tested pathogens including resistant bacteria and insignificant hemolytic activity against human red blood cells up to 100 μM concentrations and demonstrated resistance against trypsin digestion. C10-PR-Spn and C12-PR-Spn showed synergistic antimicrobial activity against multidrug-resistant methicillin-resistant Staphylococcus aureus with several tested antibiotics. These lipopeptides did not permeabilize bacterial membrane-mimetic lipid vesicles or damage the Escherichia coli membrane like the nonmembrane-lytic AMP, buforin-II. The results suggested that C10-PR-Spn and C12-PR-Spn could interact with the 70S ribosome of E. coli and inhibit its protein synthesis. C10-PR-Spn and C12-PR-Spn demonstrated superior clearance of bacteria from the spleen, liver, and kidneys of mice, infected with S. aureus ATCC 25923 compared to levofloxacin.
Collapse
Affiliation(s)
- Rikeshwer Prasad Dewangan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Ankit Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saman Habib
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
4
|
Lu T, Zheng X, Mao F, Cao Q, Cao Q, Zhu J, Li X, Lan L, Li B, Li J. Novel niclosamide-derived adjuvants elevating the efficacy of polymyxin B against MDR Pseudomonas aeruginosa DK2. Eur J Med Chem 2022; 236:114318. [DOI: 10.1016/j.ejmech.2022.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
|
5
|
Acharya Y, Bhattacharyya S, Dhanda G, Haldar J. Emerging Roles of Glycopeptide Antibiotics: Moving beyond Gram-Positive Bacteria. ACS Infect Dis 2022; 8:1-28. [PMID: 34878254 DOI: 10.1021/acsinfecdis.1c00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycopeptides, a class of cell wall biosynthesis inhibitors, have been the antibiotics of choice against drug-resistant Gram-positive bacterial infections. Their unique mechanism of action involving binding to the substrate of cell wall biosynthesis and substantial longevity in clinics makes this class of antibiotics an attractive choice for drug repurposing and reprofiling. However, resistance to glycopeptides has been observed due to alterations in the substrate, cell wall thickening, or both. The emergence of glycopeptide resistance has resulted in the development of synthetic and semisynthetic glycopeptide analogues to target acquired resistance. Recent findings demonstrate that these derivatives, along with some of the FDA approved glycopeptides have been shown to have antimicrobial activity against Gram-negative bacteria, Mycobacteria, and viruses thus expanding their spectrum of activity across the microbial kingdom. Additional mechanisms of action and identification of novel targets have proven to be critical in broadening the spectrum of activity of glycopeptides. This review focuses on the applications of glycopeptides beyond their traditional target group of Gram-positive bacteria. This will aid in making the scientific community aware about the nontraditional activity profiles of glycopeptides, identify the existing loopholes, and further explore this antibiotic class as a potential broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Shaown Bhattacharyya
- Biochemistry and Molecular Biology Program, Departments of Chemistry and Biology, College of Arts and Science, Boston University, Boston, Massachusetts 02215, United States
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
6
|
Khwaza V, Oyedeji OO, Aderibigbe BA, Morifi E, Fonkui YT, Ndinteh DT, Nell M, Steenkamp V. Design of Oleanolic Acid-based Hybrid Compounds as Potential Pharmaceutical Scaffolds. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210604112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Infectious diseases, as well as cancer, are the leading causes of death
worldwide. Drug resistance usually results in their treatment requiring a combination of two or more
drugs.
Objective:
Oleanolic-based hybrid compounds were prepared via esterification and characterized
using FTIR, NMR and LC-MS. In vitro antibacterial and in vitro cytotoxicity studies were performed.
Method:
Oleanolic acid was hybridized with selected known pharmaceutical scaffolds via the carboxylic
acid functionality in order to develop therapeutics with increased biological activity. Antibacterial
activity was determined using the micro-dilution assay against selected Gram-positive and
Gram-negative bacteria and cytotoxicity using the sulforhodamine B assay.
Results:
Compound 8 displayed potent antibacterial effect against five strains of bacteria, such as
Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris, Klebsiella oxytoca, and Escherichia coli,
with MIC values of 1.25, 0.078, 0.078, 1.25, 1.25 mg/mL when compared to the control, oleanolic
acid (MIC = 2.5 mg/mL). Furthermore, in vitro cytotoxicity, as determined using the SRB assay,
against selected cancer cells revealed that compound 7 was the most cytotoxic on MDA, DU145, and
MCF-7 cell lines with IC50 values of 69.87 ± 1.04, 73.2 ± 1.08, and 85.27 ± 1.02 μg/mL, respectively,
compared to oleanolic acid with an IC50 > 200 μg/mL.
Conclusion:
Hybridization of oleanolic acid was successful, and further development of these potential
antibacterial compounds with reduced cytotoxicity is therefore warranted.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry division, University of the Witwatersrand, Johannesburg
Private Bag X3, WITS, 2050, South Africa
| | - Youmbi Thierry Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science,
University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry,
Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Margo Nell
- Department of
Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Vanessa Steenkamp
- Department of
Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
7
|
van Groesen E, Slingerland CJ, Innocenti P, Mihajlovic M, Masereeuw R, Martin NI. Vancomyxins: Vancomycin-Polymyxin Nonapeptide Conjugates That Retain Anti-Gram-Positive Activity with Enhanced Potency against Gram-Negative Strains. ACS Infect Dis 2021; 7:2746-2754. [PMID: 34387988 PMCID: PMC8438664 DOI: 10.1021/acsinfecdis.1c00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Vancomycin functions
by binding to lipid II, the penultimate bacterial
cell wall building block used by both Gram-positive and Gram-negative
species. However, vancomycin is generally only able to exert its antimicrobial
effect against Gram-positive strains as it cannot pass the outer membrane
(OM) of Gram-negative bacteria. To address this challenge, we here
describe efforts to conjugate vancomycin to the OM disrupting polymyxin
E nonapeptide (PMEN) to yield the hybrid “vancomyxins”.
In designing these hybrid antibiotics, different spacers and conjugation
sites were explored for connecting vancomycin and PMEN. The vancomyxins
show improved activity against Gram-negative strains compared with
the activity of vancomycin or vancomycin supplemented with PMEN separately.
In addition, the vancomyxins maintain the antimicrobial effect of
vancomycin against Gram-positive strains and, in some cases, show
enhanced activity against vancomycin-resistant strains. The hybrid
antibiotics described here have reduced nephrotoxicity when compared
with clinically used polymyxin antibiotics. This study demonstrates
that covalent conjugation to an OM disruptor contributes to sensitizing
Gram-negative strains to vancomycin while retaining anti-Gram-positive
activity.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
8
|
Surur AS, Sun D. Macrocycle-Antibiotic Hybrids: A Path to Clinical Candidates. Front Chem 2021; 9:659845. [PMID: 33996753 PMCID: PMC8120311 DOI: 10.3389/fchem.2021.659845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
The tale of abate in antibiotics continued defense mechanisms that chaperone the rise of drug-defying superbugs—on the other hand, the astray in antibacterial drug discovery and development. Our salvation lies in circumventing the genesis of resistance. Considering the competitive advantages of antibacterial chemotherapeutic agents equipped with multiple warheads against resistance, the development of hybrids has rejuvenated. The adoption of antibiotic hybrid paradigm to macrocycles has advanced novel chemical entities to clinical trials. The multi-targeted TD-1792, for instance, retained potent antibacterial activities against multiple strains that are resistant to its constituent, vancomycin. Moreover, the antibiotic conjugation of rifamycins has provided hybrid clinical candidates with desirable efficacy and safety profiles. In 2020, the U.S. FDA has granted an orphan drug designation to TNP-2092, a conjugate of rifamycin and fluoroquinolone, for the treatment of prosthetic joint infections. DSTA4637S is a pioneer antibacterial agent under clinical development and represents a novel class of bacterial therapy, that is, antibody–antibiotic conjugates. DSTA4637S is effective against the notorious persistent S. aureus bacteremia, a revelation of the abracadabra potential of antibiotic hybrid approaches.
Collapse
Affiliation(s)
- Abdrrahman Shemsu Surur
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| |
Collapse
|
9
|
Dezanet C, Kempf J, Mingeot-Leclercq MP, Décout JL. Amphiphilic Aminoglycosides as Medicinal Agents. Int J Mol Sci 2020; 21:E7411. [PMID: 33049963 PMCID: PMC7583001 DOI: 10.3390/ijms21197411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conjugation of hydrophobic group(s) to the polycationic hydrophilic core of the antibiotic drugs aminoglycosides (AGs), targeting ribosomal RNA, has led to the development of amphiphilic aminoglycosides (AAGs). These drugs exhibit numerous biological effects, including good antibacterial effects against susceptible and multidrug-resistant bacteria due to the targeting of bacterial membranes. In the first part of this review, we summarize our work in identifying and developing broad-spectrum antibacterial AAGs that constitute a new class of antibiotic agents acting on bacterial membranes. The target-shift strongly improves antibiotic activity against bacterial strains that are resistant to the parent AG drugs and to antibiotic drugs of other classes, and renders the emergence of resistant Pseudomonas aeruginosa strains highly difficult. Structure-activity and structure-eukaryotic cytotoxicity relationships, specificity and barriers that need to be crossed in their development as antibacterial agents are delineated, with a focus on their targets in membranes, lipopolysaccharides (LPS) and cardiolipin (CL), and the corresponding mode of action against Gram-negative bacteria. At the end of the first part, we summarize the other recent advances in the field of antibacterial AAGs, mainly published since 2016, with an emphasis on the emerging AAGs which are made of an AG core conjugated to an adjuvant or an antibiotic drug of another class (antibiotic hybrids). In the second part, we briefly illustrate other biological and biochemical effects of AAGs, i.e., their antifungal activity, their use as delivery vehicles of nucleic acids, of short peptide (polyamide) nucleic acids (PNAs) and of drugs, as well as their ability to cleave DNA at abasic sites and to inhibit the functioning of connexin hemichannels. Finally, we discuss some aspects of structure-activity relationships in order to explain and improve the target selectivity of AAGs.
Collapse
Affiliation(s)
- Clément Dezanet
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| | - Julie Kempf
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, Catholic University of Louvain, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium
| | - Jean-Luc Décout
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| |
Collapse
|
10
|
Aradi K, Di Giorgio A, Duca M. Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry 2020; 26:12273-12309. [PMID: 32539167 DOI: 10.1002/chem.202002258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Indexed: 01/04/2023]
Abstract
Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.
Collapse
Affiliation(s)
- Klara Aradi
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| |
Collapse
|
11
|
Ongwae GM, Morrison KR, Allen RA, Kim S, Im W, Wuest WM, Pires MM. Broadening Activity of Polymyxin by Quaternary Ammonium Grafting. ACS Infect Dis 2020; 6:1427-1435. [PMID: 32212668 DOI: 10.1021/acsinfecdis.0c00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens continue to impose a tremendous health burden across the globe. Here, we describe a novel series of polymyxin-based agents grafted with membrane-active quaternary ammonium warheads to combine two important classes of Gram-negative antimicrobial scaffolds. The goal was to deliver a targeted quaternary ammonium warhead onto the surface of bacterial pathogens using the outer membrane homing properties of polymyxin. The most potent agents resulted in new scaffolds that retained the ability to target Gram-negative bacteria and had limited toxicity toward mammalian cells. We showed, using a molecular dynamics approach, that the new agents retained their ability to engage in specific interactions with lipopolysaccharide molecules. Significantly, the combination of quaternary ammonium and polymyxin widens the activity to the pathogen Staphylococcus aureus. Our results serve as an example of how two membrane-active agents can be combined to produce a class of novel scaffolds with potent biological activity.
Collapse
Affiliation(s)
- George M. Ongwae
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly R. Morrison
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A. Allen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Seonghoon Kim
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
12
|
Lyu Y, Yang C, Chen T, Shang L, Yang Y, Li J, Shan A, Xiang W, Cheng B, Zhang L. Characterization of an antibacterial dodecapeptide from pig as a potential food preservative and its antibacterial mechanism. Food Funct 2020; 11:4090-4102. [DOI: 10.1039/d0fo00380h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A membrane-active dodecapeptide was generated from porcine antimicrobial peptide with promising antimicrobial activity for application in the food industry as a potential bio-preservative to prevent microbial spoilage.
Collapse
Affiliation(s)
- Yinfeng Lyu
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Chengyi Yang
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Tingting Chen
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Lu Shang
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Yang Yang
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Jiawei Li
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Anshan Shan
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Wensheng Xiang
- School of Life Science
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Baojing Cheng
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| | - Licong Zhang
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P.R. China
| |
Collapse
|
13
|
Dang FP, Li HJ, Wang RJ, Wu Q, Chen H, Ren JJ, Tian JH. Comparative efficacy of various antimicrobial lock solutions for preventing catheter-related bloodstream infections: A network meta-analysis of 9099 patients from 52 randomized controlled trials. Int J Infect Dis 2019; 87:154-165. [PMID: 31442627 DOI: 10.1016/j.ijid.2019.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES It remains uncertain which catheter lock solution (CLS) to prevent catheter-related bloodstream infections (CRBSI) works best and is safest for patients. This study was performed to compare the efficacy of different CLSs for the prevention of CRBSI and ranked these CLSs for practical consideration. METHODS The PubMed, Web of Science, Embase, and MEDLINE databases, earlier relevant meta-analyses, and the reference lists of included studies were searched. The primary outcome was CRBSI; secondary outcomes were catheter-related thrombosis and exit-site infections. A network meta-analysis was performed to estimate odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS A total of 52 randomized controlled trials involving 9099 patients and evaluating 13 CLSs (single and combinations) were included. With regard to the quality of the evidence, the risk of bias was typically low or unclear (45 out of 52 trials, 86.5%). In the network meta-analysis, saline (OR 8.44, 95% CI 2.19-32.46), gentamicin+citrate (OR 2.92, 95% CI 1.32-6.42), ethanol (OR 5.33, 95% CI 1.22-23.32), and cloxacillin+heparin (OR 2.07, 95% CI 1.19-5.49) were associated with a greater effect on CRBSI than heparin. CONCLUSIONS This network meta-analysis showed that minocycline-ethylenediaminetetraacetic acid (EDTA) seemed to be the most effective for the prevention of CRBSI and exit-site infection, and cefotaxime+heparin seemed to be the most effective for catheter-related thrombosis.
Collapse
Affiliation(s)
- Fang-Ping Dang
- School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China
| | - Hui-Ju Li
- School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China.
| | - Rui-Juan Wang
- School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hui Chen
- Second Hospital of Lanzhou University, Cuiying Gate 82, Lanzhou 730030, Gansu, China
| | - Jing-Jie Ren
- School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China
| | - Jin-Hui Tian
- Evidence-based Nursing Center, School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China; Key Laboratory of Clinical Translational Research and Evidence-based Medicine of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
14
|
Amphiphilic nebramine-based hybrids Rescue legacy antibiotics from intrinsic resistance in multidrug-resistant Gram-negative bacilli. Eur J Med Chem 2019; 175:187-200. [DOI: 10.1016/j.ejmech.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
|
15
|
Lyu Y, Chen T, Shang L, Yang Y, Li Z, Zhu J, Shan A. Design of Trp-Rich Dodecapeptides with Broad-Spectrum Antimicrobial Potency and Membrane-Disruptive Mechanism. J Med Chem 2019; 62:6941-6957. [PMID: 31276398 DOI: 10.1021/acs.jmedchem.9b00288] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There has recently been great concern regarding antibiotics due to potential drug resistance and the impact of antibiotics on the environment. Antimicrobial peptides are believed to have potential as novel antimicrobial agents to address the problems of antibiotics. Herein, we report a set of Trp-rich dodecapeptides derived from PMAP-36 that are based on the peptide folding principle and the amino acid characteristics. An effective peptide design template, (WXYX)3, where X represents Arg or Lys and Y represents hydrophobic or neutral amino acid, was summarized with the distribution of Trp at H-bond formation sites along the α-helical structure. The template peptide 6 (3W-2), with low amphipathicity, displayed strong antimicrobial activity against laboratory strains and clinical isolates while showing no cytotoxicity. Furthermore, 6 was able to suppress the emergence of antimicrobial resistance. Membrane permeabilization assays and microscope observations revealed the potent membrane-disruptive mechanism of 6. Overall, this study diminishes the randomness in peptide design and provides a strategy for generating effective antibiotic alternatives to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Yinfeng Lyu
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Tingting Chen
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Lu Shang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Yang Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Zhongyu Li
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Jiang Zhu
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| |
Collapse
|
16
|
Domalaon R, Ammeter D, Brizuela M, Gorityala BK, Zhanel GG, Schweizer F. Repurposed Antimicrobial Combination Therapy: Tobramycin-Ciprofloxacin Hybrid Augments Activity of the Anticancer Drug Mitomycin C Against Multidrug-Resistant Gram-Negative Bacteria. Front Microbiol 2019; 10:1556. [PMID: 31354660 PMCID: PMC6636613 DOI: 10.3389/fmicb.2019.01556] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/21/2019] [Indexed: 01/21/2023] Open
Abstract
The lack of therapeutic options to treat infections caused by multidrug-resistant (MDR) pathogens, especially Gram-negative bacteria, is apparent. Therefore, it is imperative to develop new strategies to address the problem of antimicrobial resistance. Repurposing non-antibiotic commercial drugs for antimicrobial therapy presents a viable option. We screened six anticancer drugs for their potential use in antimicrobial therapy. Here, we provide in vitro evidence that suggests feasibility to repurpose the anticancer drug mitomycin C against MDR Gram-negative bacteria. We also demonstrated that mitomycin C, etoposide and doxorubicin were affected by drug efflux in Pseudomonas aeruginosa. In combination with a tobramycin-ciprofloxacin antibiotic hybrid (TOB-CIP), the antibacterial activity of mitomycin C was enhanced against MDR clinical isolates of P. aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. In fact, 4 μg/mL (3 μM) TOB-CIP reduced the minimum inhibitory concentration of mitomycin C to ≤1 μg/mL against MDR Gram-negative bacteria, except A. baumannii. We showed that synergy was inherent to TOB-CIP and that neither tobramycin nor ciprofloxacin individually synergized with mitomycin C. Our finding supports identifying adjuvant partners for mitomycin C, such as TOB-CIP, to enhance suitability for antimicrobial therapy.
Collapse
Affiliation(s)
- Ronald Domalaon
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Derek Ammeter
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Marc Brizuela
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | | | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Synergistic combinations of anthelmintic salicylanilides oxyclozanide, rafoxanide, and closantel with colistin eradicates multidrug-resistant colistin-resistant Gram-negative bacilli. J Antibiot (Tokyo) 2019; 72:605-616. [PMID: 31028351 DOI: 10.1038/s41429-019-0186-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Repurposing nonantibiotic drugs for antimicrobial therapy presents a viable approach to drug discovery. Development of therapeutic strategies that overcome existing resistance mechanisms is important especially against those bacterial infections in which treatment options are limited, such as against multidrug-resistant Gram-negative bacilli. Herein, we provide in vitro data that suggest the addition of anthelmintic salicylanilides, including oxyclozanide, rafoxanide, and closantel, in colistin therapy to treat multidrug-resistant colistin-susceptible but more importantly colistin-resistant Gram-negative bacilli. As a stand-alone agent, the three salicylanilides suffered from limited outer membrane permeation in Pseudomonas aeruginosa, with oxyclozanide also susceptible to efflux. Synergy was apparent for the combinations against multidrug-resistant clinical isolates of P. aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae. Susceptibility breakpoints for colistin, but also with polymyxin B, were reached upon addition of 1 µg ml-1 of the corresponding salicylanilide against colistin-resistant Gram-negative bacilli. Furthermore, enhanced bacterial killing was observed in all combinations. Our data corroborate the repositioning of the three salicylanilides as adjuvants to counter resistance to the antibiotic of last resort colistin. Our findings are timely and relevant since the global dissemination of plasmid-mediated colistin resistance had been realized.
Collapse
|
18
|
The Anthelmintic Drug Niclosamide Synergizes with Colistin and Reverses Colistin Resistance in Gram-Negative Bacilli. Antimicrob Agents Chemother 2019; 63:AAC.02574-18. [PMID: 30917988 DOI: 10.1128/aac.02574-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need for new therapies to overcome antimicrobial resistance especially in Gram-negative bacilli (GNB). Repurposing old U.S. Food and Drug Administration-approved drugs as complementary agents to existing antibiotics in a synergistic combination presents an attractive strategy. Here, we demonstrate that the anthelmintic drug niclosamide selectively synergized with the lipopeptide antibiotic colistin against colistin-susceptible but more importantly against colistin-resistant GNB, including clinical isolates that harbor the mcr-1 gene. Breakpoints for colistin susceptibility in resistant Gram-negative bacilli were reached in the presence of 1 μg/ml (3 μM) niclosamide. Reversal of colistin resistance was also observed in combinations of niclosamide and polymyxin B. Enhanced bacterial killing was evident for the combination, in comparison to colistin monotherapy, against resistant Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae Accumulating evidence in the literature, along with our results, strongly suggests the potential for the combination of niclosamide and colistin to treat colistin-resistant Gram-negative bacillary infections. Our finding is significant since colistin is an antibiotic of last resort for multidrug-resistant Gram-negative bacterial infections that are nonresponsive to conventional treatments. With the recent global dissemination of plasmid-encoded colistin resistance, the addition of niclosamide to colistin therapy may hold the key to overcome colistin resistance.
Collapse
|
19
|
Guo Q, Lan T, Chen Y, Xu Y, Peng J, Tao L, Shen X. Enhanced of antibacterial activity of antibiotic-functionalized silver nanocomposites with good biocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:34. [PMID: 30840138 DOI: 10.1007/s10856-019-6236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial resistance to traditional antibiotics leads to a serious concern for medical care owing to ineffective antibiotic therapies. This study focused on the preparation of silver nanocomposites (AgNPs@Tob&PAGA) by modifying AgNPs with tobramycin (Tob) and carbohydrate polymer of poly(2-(acrylamido) glucopyranose) (PAGA). The enhanced antibacterial activities of nanocomposites against common pathogens of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were explored. The introduction of PAGA onto silver nanocomposites improved both citocompatibility and antibacterial activity. Compared with nude Tob, AgNPs@Tob&PAGA showed more fascinating antimicrobial effect against E. coli and S. aureus with about 20-fold increase in the antibacterial activity, simultaneously no detectable resistance was observed. Consequently, the silver nanocomposite as an antimicrobial agent presents promising prospects in the treatment of bacterial infections caused by antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Qianqian Guo
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Tianyu Lan
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou, 550025, China
| | - Yi Chen
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yini Xu
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jianqing Peng
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Ling Tao
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xiangchun Shen
- The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
20
|
Dhanda G, Sarkar P, Samaddar S, Haldar J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J Med Chem 2018; 62:3184-3205. [DOI: 10.1021/acs.jmedchem.8b01093] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
21
|
Domalaon R, Berry L, Tays Q, Zhanel GG, Schweizer F. Development of dilipid polymyxins: Investigation on the effect of hydrophobicity through its fatty acyl component. Bioorg Chem 2018; 80:639-648. [PMID: 30053708 DOI: 10.1016/j.bioorg.2018.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022]
Abstract
Continuous development of new antibacterial agents is necessary to counter the problem of antimicrobial resistance. Polymyxins are considered as drugs of last resort to combat multidrug-resistant Gram-negative pathogens. Structural optimization of polymyxins requires an in-depth understanding of its structure and how it relates to its antibacterial activity. Herein, the effect of hydrophobicity was explored by adding a secondary fatty acyl component of varying length onto the polymyxin structure at the amine side-chain of l-diaminobutyric acid at position 1, resulting to the development of dilipid polymyxins. The incorporation of an additional lipid was found to confer polymyxin activity against Gram-positive bacteria, to which polymyxins are inherently inactive against. The dilipid polymyxins showed selective antibacterial activity against Pseudomonas aeruginosa. Moreover, dilipid polymyxin 1 that consists of four carbon-long aliphatic lipids displayed the ability to enhance the antibacterial potency of other antibiotics in combination against P. aeruginosa, resembling the adjuvant activity of the well-known outer membrane permeabilizer polymyxin B nonapeptide (PMBN). Interestingly, our data revealed that dilipid polymyxin 1 and PMBN are substrates for the MexAB-OprM efflux system, and therefore are affected by efflux. In contrast, dilipid polymyxin analogs that consist of longer lipids and colistin were not affected by efflux, suggesting that the lipid component of polymyxin plays an important role in resisting active efflux. Our work described herein provides an understanding to the polymyxin structure that may be used to usher the development of enhanced polymyxin analogs.
Collapse
Affiliation(s)
- Ronald Domalaon
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Liam Berry
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Quinn Tays
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
22
|
Domalaon R, Sanchak Y, Koskei LC, Lyu Y, Zhanel GG, Arthur G, Schweizer F. Short Proline-Rich Lipopeptide Potentiates Minocycline and Rifampin against Multidrug- and Extensively Drug-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:e02374-17. [PMID: 29437631 PMCID: PMC5914005 DOI: 10.1128/aac.02374-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/27/2018] [Indexed: 12/11/2022] Open
Abstract
A series of 16 short proline-rich lipopeptides (SPRLPs) were constructed to mimic longer naturally existing proline-rich antimicrobial peptides. Antibacterial assessment revealed that lipopeptides containing hexadecanoic acid (C16) possess optimal antibacterial activity relative to others with shorter lipid components. SPRLPs were further evaluated for their potential to serve as adjuvants in combination with existing antibiotics to enhance antibacterial activity against drug-resistant Pseudomonas aeruginosa Out of 16 prepared SPRLPs, C12-PRP was found to significantly potentiate the antibiotics minocycline and rifampin against multidrug- and extensively drug-resistant (MDR/XDR) P. aeruginosa clinical isolates. This nonhemolytic C12-PRP is comprised of the heptapeptide sequence PRPRPRP-NH2 acylated to dodecanoic acid (C12) at the N terminus. The adjuvant potency of C12-PRP was apparent by its ability to reduce the MIC of minocycline and rifampin below their interpretative susceptibility breakpoints against MDR/XDR P. aeruginosa An attempt to optimize C12-PRP through peptidomimetic modification was performed by replacing all l- to d-amino acids. C12-PRP demonstrated that it was amenable to optimization, since synergism with minocycline and rifampin were retained. Moreover, C12-PRP displayed no cytotoxicity against human liver carcinoma HepG2 and human embryonic kidney HEK-293 cell lines. Thus, the SPRLP C12-PRP is a lead adjuvant candidate that warrants further optimization. The discovery of agents that are able to resuscitate the activity of existing antibiotics against drug-resistant Gram-negative pathogens, especially P. aeruginosa, is of great clinical interest.
Collapse
Affiliation(s)
- Ronald Domalaon
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yaroslav Sanchak
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Linet Cherono Koskei
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Yinfeng Lyu
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
24
|
Baditoiu L, Axente C, Lungeanu D, Muntean D, Horhat F, Moldovan R, Hogea E, Bedreag O, Sandesc D, Licker M. Intensive care antibiotic consumption and resistance patterns: a cross-correlation analysis. Ann Clin Microbiol Antimicrob 2017; 16:71. [PMID: 29132352 PMCID: PMC5683545 DOI: 10.1186/s12941-017-0251-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/08/2017] [Indexed: 12/04/2022] Open
Abstract
Background Over recent decades, a dramatic increase in infections caused by multidrug-resistant pathogens has been observed worldwide. The aim of the present study was to investigate the relationship between local resistance bacterial patterns and antibiotic consumption in an intensive care unit in a Romanian university hospital. Methods A prospective study was conducted between 1st January 2012 and 31st December 2013. Data covering the consumption of antibacterial drugs and the incidence density for the main resistance phenotypes was collected on a monthly basis, and this data was aggregated quarterly. The relationship between the antibiotic consumption and resistance was investigated using cross-correlation, and four regression models were constructed, using the SPSS version 20.0 (IBM, Chicago, IL) and the R version 3.2.3 packages. Results During the period studied, the incidence of combined-resistant and carbapenem-resistant P. aeruginosa strains increased significantly [(gradient = 0.78, R2 = 0.707, p = 0.009) (gradient = 0.74, R2 = 0.666, p = 0.013) respectively], mirroring the increase in consumption of β-lactam antibiotics with β-lactamase inhibitors (piperacillin/tazobactam) and carbapenems (meropenem) [(gradient = 10.91, R2 = 0.698, p = 0.010) and (gradient = 14.63, R2 = 0.753, p = 0.005) respectively]. The highest cross-correlation coefficients for zero time lags were found between combined-resistant vs. penicillins consumption and carbapenem-resistant P. aeruginosa strains vs. carbapenems consumption (0.876 and 0.928, respectively). The best model describing the relation between combined-resistant P. aeruginosa strains and penicillins consumption during a given quarter incorporates both the consumption and the incidence of combined-resistant strains in the hospital department during the previous quarter (multiple R2 = 0.953, p = 0.017). The best model for explaining the carbapenem resistance of P. aeruginosa strains based on meropenem consumption during a given quarter proved to be the adjusted model which takes into consideration both previous consumption and incidence density of strains during the previous quarter (Multiple R2 = 0.921, p = 0.037). Conclusions The cross-correlation coefficients and the fitted regression models provide additional evidence that resistance during the a given quarter depends not only on the consumption of antibacterial chemotherapeutic drugs in both that quarter and the previous one, but also on the incidence of resistant strains circulating during the previous quarter. Electronic supplementary material The online version of this article (10.1186/s12941-017-0251-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luminita Baditoiu
- Epidemiology Department, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Carmen Axente
- Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 16 Victor Babes, Timisoara, Romania.
| | - Diana Lungeanu
- Department of Functional Sciences, Centre for Modelling Biological Processes and Data Analysis, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Delia Muntean
- Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 16 Victor Babes, Timisoara, Romania.,"Pius Branzeu" Emergency Clinical County Hospital, Timisoara, Romania
| | - Florin Horhat
- Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 16 Victor Babes, Timisoara, Romania.,"Pius Branzeu" Emergency Clinical County Hospital, Timisoara, Romania
| | - Roxana Moldovan
- Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 16 Victor Babes, Timisoara, Romania.,Regional Center of Public Health Timisoara, Timisoara, Romania
| | - Elena Hogea
- Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 16 Victor Babes, Timisoara, Romania.,"Victor Babes" Clinical Hospital, Timisoara, Romania
| | - Ovidiu Bedreag
- "Pius Branzeu" Emergency Clinical County Hospital, Timisoara, Romania.,Anesthesiology and Intensive Care Department, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dorel Sandesc
- "Pius Branzeu" Emergency Clinical County Hospital, Timisoara, Romania.,Anesthesiology and Intensive Care Department, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Monica Licker
- Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 16 Victor Babes, Timisoara, Romania.,"Pius Branzeu" Emergency Clinical County Hospital, Timisoara, Romania
| |
Collapse
|