1
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Ruppeka Rupeika E, D’Huys L, Leen V, Hofkens J. Sequencing and Optical Genome Mapping for the Adventurous Chemist. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:784-807. [PMID: 39735829 PMCID: PMC11673194 DOI: 10.1021/cbmi.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 12/31/2024]
Abstract
This review provides a comprehensive overview of the chemistries and workflows of the sequencing methods that have been or are currently commercially available, providing a very brief historical introduction to each method. The main optical genome mapping approaches are introduced in the same manner, although only a subset of these are or have ever been commercially available. The review comes with a deck of slides containing all of the figures for ease of access and consultation.
Collapse
Affiliation(s)
| | - Laurens D’Huys
- Faculty
of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
| | - Volker Leen
- Perseus
Biomics B.V., Industriepark
6 bus 3, Tienen 3300, Belgium
| | - Johan Hofkens
- Faculty
of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
- Max
Planck Institute for Polymer Research, Mainz, Rheinland-Pfalz 55128, Germany
| |
Collapse
|
3
|
Nogin Y, Sapir D, Zur TD, Weinberger N, Belinkov Y, Ebenstein Y, Shechtman Y. OM2Seq: learning retrieval embeddings for optical genome mapping. BIOINFORMATICS ADVANCES 2024; 4:vbae079. [PMID: 38915884 PMCID: PMC11194751 DOI: 10.1093/bioadv/vbae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Motivation Genomics-based diagnostic methods that are quick, precise, and economical are essential for the advancement of precision medicine, with applications spanning the diagnosis of infectious diseases, cancer, and rare diseases. One technology that holds potential in this field is optical genome mapping (OGM), which is capable of detecting structural variations, epigenomic profiling, and microbial species identification. It is based on imaging of linearized DNA molecules that are stained with fluorescent labels, that are then aligned to a reference genome. However, the computational methods currently available for OGM fall short in terms of accuracy and computational speed. Results This work introduces OM2Seq, a new approach for the rapid and accurate mapping of DNA fragment images to a reference genome. Based on a Transformer-encoder architecture, OM2Seq is trained on acquired OGM data to efficiently encode DNA fragment images and reference genome segments to a common embedding space, which can be indexed and efficiently queried using a vector database. We show that OM2Seq significantly outperforms the baseline methods in both computational speed (by 2 orders of magnitude) and accuracy. Availability and implementation https://github.com/yevgenin/om2seq.
Collapse
Affiliation(s)
- Yevgeni Nogin
- Russel Berrie Nanotechnology Institute, Technion, Haifa 320003, Israel
| | - Danielle Sapir
- Faculty of Electrical and Computer Engineering, Technion, Haifa 320003, Israel
| | - Tahir Detinis Zur
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Weinberger
- Faculty of Electrical and Computer Engineering, Technion, Haifa 320003, Israel
| | | | - Yuval Ebenstein
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoav Shechtman
- Russel Berrie Nanotechnology Institute, Technion, Haifa 320003, Israel
- Department of Biomedical Engineering, Technion, Haifa 320003, Israel
- Lorry I. Lokey Center for Life Sciences and Engineering, Technion, Haifa 320003, Israel
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
4
|
Ruppeka-Rupeika E, Abakumov S, Engelbrecht M, Chen X, do Carmo Linhares D, Bouwens A, Leen V, Hofkens J. Optical Mapping: Detecting Genomic Resistance Cassettes in MRSA. ACS OMEGA 2024; 9:8862-8873. [PMID: 38434835 PMCID: PMC10905696 DOI: 10.1021/acsomega.3c05902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant bacterium with a global presence in healthcare facilities as well as community settings. The resistance of MRSA to beta-lactam antibiotics can be attributed to a mobile genetic element called the staphylococcal cassette chromosome mec (SCCmec), ranging from 23 to 68 kilobase pairs in length. The mec gene complex contained in SCCmec allows MRSA to survive in the presence of penicillin and other beta-lactam antibiotics. We demonstrate that optical mapping (OM) is able to identify the bacterium as S. aureus, followed by an investigation of the presence of kilobase pair range SCCmec elements by examining the associated OM-generated barcode patterns. By employing OM as an alternative to traditional DNA sequencing, we showcase its potential for the detection of complex genetic elements such as SCCmec in MRSA. This approach holds promise for enhancing our understanding of antibiotic resistance mechanisms and facilitating the development of targeted interventions against MRSA infections.
Collapse
Affiliation(s)
| | - Sergey Abakumov
- Chemistry, KU Leuven Faculty of Science, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
| | | | - Xiong Chen
- Chemistry, KU Leuven Faculty of Science, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
| | | | - Arno Bouwens
- Perseus
Biomics B.V., Industriepark
6 bus 3, Tienen 3300, Belgium
| | - Volker Leen
- Perseus
Biomics B.V., Industriepark
6 bus 3, Tienen 3300, Belgium
| | - Johan Hofkens
- Chemistry, KU Leuven Faculty of Science, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
- Max
Planck Institute for Polymer Research, Mainz 55128, Rheinland-Pfalz, Germany
| |
Collapse
|
5
|
Krishnan S, Jose S, Periyasamy BK, Angayarkanny S, Bensingh RJ. Fluorescent polymer as a biosensing tool for the diagnosis of microbial pathogens. Sci Rep 2024; 14:2203. [PMID: 38272939 PMCID: PMC10810778 DOI: 10.1038/s41598-024-51919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Diseases and diagnoses are predominant in the human population. Early diagnosis of etiological agents plays a vital role in the treatment of bacterial infections. Existing standard diagnostic platforms are laborious, time-consuming, and require trained personnel and cost-effective procedure, though they are producing promising results. These shortcomings have led to a thirst for rapid diagnostic procedures. Fluorescence-based diagnosis is one of the efficient rapid diagnostic methods that rely on specific and sensitive bacterial detection. Emerging bio-sensing studies on conducting polymers (CPs) are gaining popularity in medical diagnostics due to their promising properties of high fluorescence efficiency, good light stability, and low cytotoxicity. Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), is the first identified soluble polymer and model material for understanding the fundamental photophysics of conventional CPs. In this present study, MEH-PPV is used as a fluorescent dye for direct pathogen detection applications by interacting with the microbial cell surface. An optimized concentration of MEH-PPV solution used to confirm the presence of selective bacterial structures. The present study endeavours towards bacterial detection based on the emission from bacteria due to interfacial interaction between polymer and bacterial surface.
Collapse
Affiliation(s)
- Selvi Krishnan
- Central Institute of Petrochemicals Engineering and Technology, Chennai, India
| | - Stephen Jose
- Central Institute of Petrochemicals Engineering and Technology, Chennai, India
| | | | - S Angayarkanny
- Department of Chemistry, Anna University, Chennai, India
| | - R Joseph Bensingh
- Central Institute of Petrochemicals Engineering and Technology, Chennai, India
| |
Collapse
|
6
|
Kk S, Persson F, Fritzsche J, Beech JP, Tegenfeldt JO, Westerlund F. Fluorescence Microscopy of Nanochannel-Confined DNA. Methods Mol Biol 2024; 2694:175-202. [PMID: 37824005 DOI: 10.1007/978-1-0716-3377-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level, and the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments, and analyze the data.
Collapse
Affiliation(s)
- Sriram Kk
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Jason P Beech
- NanoLund and Department of Physics, Lund University, Lund, Sweden
| | | | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
7
|
Nogin Y, Bar-Lev D, Hanania D, Detinis Zur T, Ebenstein Y, Yaakobi E, Weinberger N, Shechtman Y. Design of optimal labeling patterns for optical genome mapping via information theory. Bioinformatics 2023; 39:btad601. [PMID: 37758248 PMCID: PMC10563147 DOI: 10.1093/bioinformatics/btad601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
MOTIVATION Optical genome mapping (OGM) is a technique that extracts partial genomic information from optically imaged and linearized DNA fragments containing fluorescently labeled short sequence patterns. This information can be used for various genomic analyses and applications, such as the detection of structural variations and copy-number variations, epigenomic profiling, and microbial species identification. Currently, the choice of labeled patterns is based on the available biochemical methods and is not necessarily optimized for the application. RESULTS In this work, we develop a model of OGM based on information theory, which enables the design of optimal labeling patterns for specific applications and target organism genomes. We validated the model through experimental OGM on human DNA and simulations on bacterial DNA. Our model predicts up to 10-fold improved accuracy by optimal choice of labeling patterns, which may guide future development of OGM biochemical labeling methods and significantly improve its accuracy and yield for applications such as epigenomic profiling and cultivation-free pathogen identification in clinical samples. AVAILABILITY AND IMPLEMENTATION https://github.com/yevgenin/PatternCode.
Collapse
Affiliation(s)
- Yevgeni Nogin
- Russell Berrie Nanotechnology Institute, Technion, Haifa 320003, Israel
| | | | - Dganit Hanania
- Department of Computer Science, Technion, Haifa 320003, Israel
| | - Tahir Detinis Zur
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eitan Yaakobi
- Department of Computer Science, Technion, Haifa 320003, Israel
| | - Nir Weinberger
- Department of Electrical Engineering, Technion, Haifa 320003, Israel
| | - Yoav Shechtman
- Russell Berrie Nanotechnology Institute, Technion, Haifa 320003, Israel
- Department of Biomedical Engineering, Technion, Haifa 320003, Israel
- Lorry I. Lokey Center for Life Sciences and Engineering, Technion, Haifa 320003, Israel
| |
Collapse
|
8
|
Nyblom M, Johnning A, Frykholm K, Wrande M, Müller V, Goyal G, Robertsson M, Dvirnas A, Sewunet T, KK S, Ambjörnsson T, Giske CG, Sandegren L, Kristiansson E, Westerlund F. Strain-level bacterial typing directly from patient samples using optical DNA mapping. COMMUNICATIONS MEDICINE 2023; 3:31. [PMID: 36823379 PMCID: PMC9950433 DOI: 10.1038/s43856-023-00259-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Identification of pathogens is crucial to efficiently treat and prevent bacterial infections. However, existing diagnostic techniques are slow or have a too low resolution for well-informed clinical decisions. METHODS In this study, we have developed an optical DNA mapping-based method for strain-level bacterial typing and simultaneous plasmid characterisation. For the typing, different taxonomical resolutions were examined and cultivated pure Escherichia coli and Klebsiella pneumoniae samples were used for parameter optimization. Finally, the method was applied to mixed bacterial samples and uncultured urine samples from patients with urinary tract infections. RESULTS We demonstrate that optical DNA mapping of single DNA molecules can identify Escherichia coli and Klebsiella pneumoniae at the strain level directly from patient samples. At a taxonomic resolution corresponding to E. coli sequence type 131 and K. pneumoniae clonal complex 258 forming distinct groups, the average true positive prediction rates are 94% and 89%, respectively. The single-molecule aspect of the method enables us to identify multiple E. coli strains in polymicrobial samples. Furthermore, by targeting plasmid-borne antibiotic resistance genes with Cas9 restriction, we simultaneously identify the strain or subtype and characterize the corresponding plasmids. CONCLUSION The optical DNA mapping method is accurate and directly applicable to polymicrobial and clinical samples without cultivation. Hence, it has the potential to rapidly provide comprehensive diagnostics information, thereby optimizing early antibiotic treatment and opening up for future precision medicine management.
Collapse
Affiliation(s)
- My Nyblom
- grid.5371.00000 0001 0775 6028Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96 Sweden
| | - Anna Johnning
- grid.5371.00000 0001 0775 6028Department of Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Gothenburg, 412 96 Sweden ,grid.452079.dDepartment of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, 412 88 Sweden ,Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, 405 30 Sweden
| | - Karolin Frykholm
- grid.5371.00000 0001 0775 6028Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96 Sweden
| | - Marie Wrande
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 751 23 Sweden
| | - Vilhelm Müller
- grid.5371.00000 0001 0775 6028Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96 Sweden
| | - Gaurav Goyal
- grid.5371.00000 0001 0775 6028Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96 Sweden
| | - Miriam Robertsson
- grid.5371.00000 0001 0775 6028Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96 Sweden
| | - Albertas Dvirnas
- grid.4514.40000 0001 0930 2361Department of Astronomy and Theoretical Physics, Lund University, Lund, 223 62 Sweden
| | - Tsegaye Sewunet
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 141 86 Sweden
| | - Sriram KK
- grid.5371.00000 0001 0775 6028Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96 Sweden
| | - Tobias Ambjörnsson
- grid.4514.40000 0001 0930 2361Department of Astronomy and Theoretical Physics, Lund University, Lund, 223 62 Sweden
| | - Christian G. Giske
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 141 86 Sweden ,grid.24381.3c0000 0000 9241 5705Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, 171 76 Sweden
| | - Linus Sandegren
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 751 23 Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Gothenburg, 412 96, Sweden. .,Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, 405 30, Sweden.
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden. .,Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, 405 30, Sweden.
| |
Collapse
|
9
|
KK S, Wranne MS, Sewunet T, Ekedahl E, Coorens M, Tangkoskul T, Thamlikitkul V, Giske CG, Westerlund F. Identification and characterization of plasmids carrying the mobile colistin resistance gene mcr-1 using optical DNA mapping. JAC Antimicrob Resist 2023; 5:dlad004. [PMID: 36743530 PMCID: PMC9891347 DOI: 10.1093/jacamr/dlad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Objectives Colistin is a last-resort antibiotic, but there has been a rapid increase in colistin resistance, threatening its use in the treatment of infections with carbapenem-resistant Enterobacterales (CRE). Plasmid-mediated colistin resistance, in particular the mcr-1 gene, has been identified and WGS is the go-to method in identifying plasmids carrying mcr-1 genes. The goal of this study is to demonstrate the use of optical DNA mapping (ODM), a fast, efficient and amplification-free technique, to characterize plasmids carrying mcr-1. Methods ODM is a single-molecule technique, which we have demonstrated can be used for identifying plasmids harbouring antibiotic resistance genes. We here applied the technique to plasmids isolated from 12 clinical Enterobacterales isolates from patients at a major hospital in Thailand and verified our results using Nanopore long-read sequencing. Results We successfully identified plasmids encoding the mcr-1 gene and, for the first time, demonstrated the ability of ODM to identify resistance gene sites in small (∼30 kb) plasmids. We further identified bla CTX-M genes in different plasmids than the ones encoding mcr-1 in three of the isolates studied. Finally, we propose a cut-and-stretch assay, based on similar principles, but performed using surface-functionalized cover slips for DNA immobilization and an inexpensive microscope with basic functionalities, to identify the mcr-1 gene in a plasmid sample. Conclusions Both ODM and the cut-and-stretch assay developed could be very useful in identifying plasmids encoding antibiotic resistance in hospitals and healthcare facilities. The cut-and-stretch assay is particularly useful in low- and middle-income countries, where existing techniques are limited.
Collapse
Affiliation(s)
- Sriram KK
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Moa S Wranne
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tsegaye Sewunet
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elina Ekedahl
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Maarten Coorens
- Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Torstensson E, Goyal G, Johnning A, Westerlund F, Ambjörnsson T. Combining dense and sparse labeling in optical DNA mapping. PLoS One 2021; 16:e0260489. [PMID: 34843574 PMCID: PMC8629184 DOI: 10.1371/journal.pone.0260489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids.
Collapse
Affiliation(s)
- Erik Torstensson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Gaurav Goyal
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Gothenburg, Sweden
- Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, CARe, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
11
|
KK S, Lin YL, Sewunet T, Wrande M, Sandegren L, Giske CG, Westerlund F. A Parallelized Nanofluidic Device for High-Throughput Optical DNA Mapping of Bacterial Plasmids. MICROMACHINES 2021; 12:1234. [PMID: 34683285 PMCID: PMC8538381 DOI: 10.3390/mi12101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022]
Abstract
Optical DNA mapping (ODM) has developed into an important technique for DNA analysis, where single DNA molecules are sequence-specifically labeled and stretched, for example, in nanofluidic channels. We have developed an ODM assay to analyze bacterial plasmids-circular extrachromosomal DNA that often carry genes that make bacteria resistant to antibiotics. As for most techniques, the next important step is to increase throughput and automation. In this work, we designed and fabricated a nanofluidic device that, together with a simple automation routine, allows parallel analysis of up to 10 samples at the same time. Using plasmids encoding extended-spectrum beta-lactamases (ESBL), isolated from Escherichiacoli and Klebsiellapneumoniae, we demonstrate the multiplexing capabilities of the device when it comes to both many samples in parallel and different resistance genes. As a final example, we combined the device with a novel protocol for rapid cultivation and extraction of plasmids from fecal samples collected from patients. This combined protocol will make it possible to analyze many patient samples in one device already on the day the sample is collected, which is an important step forward for the ODM analysis of plasmids in clinical diagnostics.
Collapse
Affiliation(s)
- Sriram KK
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (S.K.); (Y.-L.L.)
| | - Yii-Lih Lin
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (S.K.); (Y.-L.L.)
| | - Tsegaye Sewunet
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 141 52 Stockholm, Sweden; (T.S.); (C.G.G.)
| | - Marie Wrande
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden; (M.W.); (L.S.)
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden; (M.W.); (L.S.)
| | - Christian G. Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 141 52 Stockholm, Sweden; (T.S.); (C.G.G.)
- Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (S.K.); (Y.-L.L.)
| |
Collapse
|
12
|
D’Huys L, Vitale R, Ruppeka-Rupeika E, Goyvaerts V, Ruckebusch C, Hofkens J. Assessing the Resolution of Methyltransferase-Mediated DNA Optical Mapping. ACS OMEGA 2021; 6:21276-21283. [PMID: 34471732 PMCID: PMC8387989 DOI: 10.1021/acsomega.1c01381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Interest in the human microbiome is growing and has been, for the past decade, leading to new insights into disease etiology and general human biology. Stimulated by these advances and in a parallel trend, new DNA sequencing platforms have been developed, radically expanding the possibilities in microbiome research. While DNA sequencing plays a pivotal role in this field, there are some technological hurdles that are yet to be overcome. Targeting of the 16S rRNA gene with amplicon sequencing, for instance, is frequently used for sample composition profiling due to its short sample-to-result time and low cost, which counterbalance its low resolution (genus to species level). On the other hand, more comprehensive methods, namely, whole-genome sequencing (WGS) and shallow shotgun sequencing, are capable of yielding single-gene- and functional-level resolution at a higher cost and much higher sample processing time. It goes without saying that the existing gap between these two types of approaches still calls for the development of a fast, robust, and low-cost analytical platform. In search of the latter, we investigated the taxonomic resolution of methyltransferase-mediated DNA optical mapping and found that strain-level identification can be achieved with both global and whole-genome analyses as well as using a unique identifier (UI) database. In addition, we demonstrated that UI selection in DNA optical mapping, unlike variable region selection in 16S amplicon sequencing, is not limited to any genomic location, explaining the increase in resolution. This latter aspect was highlighted by SCCmec typing in methicillin-resistant Staphylococcus aureus (MRSA) using a simulated data set. In conclusion, we propose DNA optical mapping as a method that has the potential to be highly complementary to current sequencing platforms.
Collapse
Affiliation(s)
- Laurens D’Huys
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raffaele Vitale
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Dynamics,
Nanoscopy and Chemometrics (DYNACHEM) Group, U. Lille, CNRS, LASIRE,
Laboratoire Avancé de Spectroscopie pour les Interactions,
la Réactivité et l’Environnement, Cité Scientifique, F-59000 Lille, France
| | - Elizabete Ruppeka-Rupeika
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Vince Goyvaerts
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Cyril Ruckebusch
- Dynamics,
Nanoscopy and Chemometrics (DYNACHEM) Group, U. Lille, CNRS, LASIRE,
Laboratoire Avancé de Spectroscopie pour les Interactions,
la Réactivité et l’Environnement, Cité Scientifique, F-59000 Lille, France
| | - Johan Hofkens
- Molecular
Imaging and Photonics Unit, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Jeffet J, Margalit S, Michaeli Y, Ebenstein Y. Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Essays Biochem 2021; 65:51-66. [PMID: 33739394 PMCID: PMC8056043 DOI: 10.1042/ebc20200021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The human genome contains multiple layers of information that extend beyond the genetic sequence. In fact, identical genetics do not necessarily yield identical phenotypes as evident for the case of two different cell types in the human body. The great variation in structure and function displayed by cells with identical genetic background is attributed to additional genomic information content. This includes large-scale genetic aberrations, as well as diverse epigenetic patterns that are crucial for regulating specific cell functions. These genetic and epigenetic patterns operate in concert in order to maintain specific cellular functions in health and disease. Single-molecule optical genome mapping is a high-throughput genome analysis method that is based on imaging long chromosomal fragments stretched in nanochannel arrays. The access to long DNA molecules coupled with fluorescent tagging of various genomic information presents a unique opportunity to study genetic and epigenetic patterns in the genome at a single-molecule level over large genomic distances. Optical mapping entwines synergistically chemical, physical, and computational advancements, to uncover invaluable biological insights, inaccessible by sequencing technologies. Here we describe the method's basic principles of operation, and review the various available mechanisms to fluorescently tag genomic information. We present some of the recent biological and clinical impact enabled by optical mapping and present recent approaches for increasing the method's resolution and accuracy. Finally, we discuss how multiple layers of genomic information may be mapped simultaneously on the same DNA molecule, thus paving the way for characterizing multiple genomic observables on individual DNA molecules.
Collapse
Affiliation(s)
- Jonathan Jeffet
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sapir Margalit
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Michaeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|