1
|
Rossner C. Polymer-Grafted Gold Colloids and Supracolloids: From Mechanisms of Formation to Dynamic Soft Matter. Macromol Rapid Commun 2025; 46:e2400851. [PMID: 39783139 PMCID: PMC11884231 DOI: 10.1002/marc.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Gold nanoparticles represent nanosized colloidal entities with high relevance for both basic and applied research. When gold nanoparticles are functionalized with polymer-molecule ligands, hybrid nanoparticles emerge whose interactions with the environment are controlled by the polymer coating layer: Colloidal stability and structure formation on the single particle level as well as at the supracolloidal scale can be enabled and engineered by tailoring the composition and architecture of this polymer coating. These possibilities in controlling structure formation may lead to synergistic and/or emergent functional properties of such hybrid colloidal systems. Eventually, the responsivity of the polymer coating to external triggers also enables the formation of hybrid supracolloidal systems with specific dynamic properties. This review provides an overview of fundamentals and recent developments in this vibrant domain of materials science.
Collapse
Affiliation(s)
- Christian Rossner
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Faculty of Chemistry and Food ChemistryTechnische Universität DresdenD‐01069DresdenGermany
- Department of PolymersUniversity of Chemistry and Technology PragueTechnická 5Prague 6166 28Czech Republic
| |
Collapse
|
2
|
Liang CX, Lu H, Huang BY, Xing JY, Gu FL, Liu H. Physical Insight for Grafting Polymer Chains onto the Substrate via Computer Simulations: Kinetics and Property. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Wang YX, Li Y, Qiao SH, Kang J, Shen ZL, Zhang NN, An Z, Wang X, Liu K. Polymers via Reversible Addition-Fragmentation Chain Transfer Polymerization with High Thiol End-Group Fidelity for Effective Grafting-To Gold Nanoparticles. J Phys Chem Lett 2021; 12:4713-4721. [PMID: 33982560 DOI: 10.1021/acs.jpclett.1c01039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
End-group fidelity is the most important property for end-functional polymers. Compared to other controlled living polymerization methods, reversible addition-fragmentation chain transfer (RAFT) polymerization often yields polymers with a lower end-group fidelity, which greatly affects their applications. Herein, we report a staged-thermal-initiation RAFT polymerization for the synthesis of polymers with high thiol end-group fidelity and their high efficiencies for grafting to various gold nanoparticles (GNPs). We experimentally prove that the decrease of end-group fidelity with their molecular weight is caused by the gradual decomposition of the initiator rather than the degradation of chain-transfer agents. We show that the staged-thermal-initiation RAFT polymerization is more effective for synthesis of polymers with high thiol end-group fidelity. The grafting-to assays for various GNPs illustrate the positive correlation between the end-group fidelity of polymers and grafting-to efficiency. This work highlights the prospects for synthesis of high end-group fidelity polymers and their application in the preparation of nanoparticles-polymer hybrid materials.
Collapse
Affiliation(s)
- Yu-Xi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shi-Hui Qiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zhi-Li Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|