1
|
Cureno Hernandez KE, Lee J, Kim S, Cartwright Z, Herrera-Alonso M. Boronic acid-mediated mucin/surface interactions of zwitterionic polymer brushes. SOFT MATTER 2025; 21:3125-3136. [PMID: 40171575 DOI: 10.1039/d4sm01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mucus is a substance that acts as a protective barrier, shielding tissues from infections caused by viruses and bacteria. Recent studies highlight the advantages of transmucosal drug delivery compared to traditional delivery methods. However, external particles in mucus struggle to penetrate its deeper layers and are often eliminated by mucus clearance mechanisms, hindering effective drug delivery. To gain a deeper understanding of how material surfaces interact with mucus, we grafted brushes of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) onto silica surfaces, followed by the straightforward installation of a terminal boronic acid moiety (3-phenylboronic acid, APBA). The modification process was carried out following a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP), a method known for its effectiveness in producing well-defined grafted polymers. After conjugation of APBA, we studied the effects of surface chemistry on properties such as pH-sensitivity and mucin adsorption. The surfaces modified with the zwitterionic polymer showed no mucin interaction regardless of system pH. However, all the surfaces containing the boronic acid showed boronic acid-sialic acid interactions, particularly at lower pH values. The insights gained from this study will enhance our understanding of the interactions between the zwitterionic PMPC and the boronic acid APBA with mucins, laying the groundwork for future chemical modifications of particle surfaces aimed at modulating their transport through mucus.
Collapse
Affiliation(s)
- Karla E Cureno Hernandez
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Jeonghun Lee
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Sunghoon Kim
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Zach Cartwright
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Margarita Herrera-Alonso
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
2
|
Xue T, Li Y, Torre M, Shao R, Han Y, Chen S, Lee D, Kohane DS. Polymeric Prodrugs using Dynamic Covalent Chemistry for Prolonged Local Anesthesia. Angew Chem Int Ed Engl 2024; 63:e202406158. [PMID: 38885607 PMCID: PMC11337095 DOI: 10.1002/anie.202406158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 06/20/2024]
Abstract
Depot-type drug delivery systems are designed to deliver drugs at an effective rate over an extended period. Minimizing initial "burst" can also be important, especially with drugs causing systemic toxicity. Both goals are challenging with small hydrophilic molecules. The delivery of molecules such as the ultrapotent local anesthetic tetrodotoxin (TTX) exemplifies both challenges. Toxicity can be mitigated by conjugating TTX to polymers with ester bonds, but the slow ester hydrolysis can result in subtherapeutic TTX release. Here, we developed a prodrug strategy, based on dynamic covalent chemistry utilizing a reversible reaction between the diol TTX and phenylboronic acids. These polymeric prodrugs exhibited TTX encapsulation efficiencies exceeding 90 % and the resulting polymeric nanoparticles showed a range of TTX release rates. In vivo injection of the TTX polymeric prodrugs at the sciatic nerve reduced TTX systemic toxicity and produced nerve block lasting 9.7±2.0 h, in comparison to 1.6±0.6 h from free TTX. This approach could also be used to co-deliver the diol dexamethasone, which prolonged nerve block to 21.8±5.1 h. This work emphasized the usefulness of dynamic covalent chemistry for depot-type drug delivery systems with slow and effective drug release kinetics.
Collapse
Affiliation(s)
- Tianrui Xue
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Matthew Torre
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Rachelle Shao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Yiyuan Han
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Shuanglong Chen
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Daniel Lee
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| |
Collapse
|
3
|
Wang L, Gao T, Yan J, Hong Y, Ma Y, Jin R, Kang C, Gao L. Enantiomer Recognition Based on Chirality Transfer from Chiral Amines to Ternary Dynamic Covalent Systems. J Org Chem 2024; 89:1797-1806. [PMID: 38197600 DOI: 10.1021/acs.joc.3c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Enantiomer recognition is usually required in organic synthesis and materials and life sciences. This paper describes an enantiomer recognition method based on ternary dynamic covalent systems constructed via the complexation of chiral amines with a chiral boronate derived from 1,4-phenylenediboric acid and an L-DOPA-modified naphthalenediimide. The ternary systems aggregate into chiral assemblies driven by π-π interactions, and the chirality is transferred from the chiral amines to assemblies with high stereospecificity. Consequently, the enantiomer composition of chiral amines and the absolute configuration of the major enantiomer can be determined according to the sign of the Cotton effect of the ternary system by using circular dichroism (CD) spectroscopy. This method offers the advantage of using the long wavelength CD signals of the boronate at around 520 nm, thereby avoiding interference with those of the carbon skeleton. This ternary system provides a novel approach to the design of enantiomer recognition systems.
Collapse
Affiliation(s)
- Liangpeng Wang
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Tingting Gao
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jijun Yan
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yun Hong
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yiming Ma
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Rizhe Jin
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chuanqing Kang
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lianxun Gao
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
4
|
Song K, Nguyen DC, Luu T, Yazdani O, Roy D, Stayton PS, Pun SH. A mannosylated polymer with endosomal release properties for peptide antigen delivery. J Control Release 2023; 356:232-241. [PMID: 36878319 PMCID: PMC10693254 DOI: 10.1016/j.jconrel.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Peptide cancer vaccines have had limited clinical success despite their safety, characterization and production advantages. We hypothesize that the poor immunogenicity of peptides can be surmounted by delivery vehicles that overcome the systemic, cellular and intracellular drug delivery barriers faced by peptides. Here, we introduce Man-VIPER, a self-assembling (40-50 nm micelles), pH-sensitive, mannosylated polymeric peptide delivery platform that targets dendritic cells in the lymph nodes, encapsulates peptide antigens at physiological pH, and facilitates endosomal release of antigens at acidic endosomal pH through a conjugated membranolytic peptide melittin. We used d-melittin to improve the safety profile of the formulation without compromising the lytic properties. We evaluated polymers with both releasable (Man-VIPER-R) or non-releasable (Man-VIPER-NR) d-melittin. Both Man-VIPER polymers exhibited superior endosomolysis and antigen cross-presentation compared to non-membranolytic d-melittin-free analogues (Man-AP) in vitro. In vivo, Man-VIPER polymers demonstrated an adjuvanting effect, induced the proliferation of antigen-specific cytotoxic T cells and helper T cells compared to free peptides and Man-AP. Remarkably, antigen delivery with Man-VIPER-NR generated significantly more antigen-specific cytotoxic T cells than Man-VIPER-R in vivo. As our candidate for a therapeutic vaccine, Man-VIPER-NR exerted superior efficacy in a B16F10-OVA tumor model. These results highlight Man-VIPER-NR as a safe and powerful peptide cancer vaccine platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Kefan Song
- Department of Bioengineering, University of Washington, USA
| | - Dinh Chuong Nguyen
- Molecular Engineering & Sciences Institute, University of Washington, USA
| | - Tran Luu
- Department of Bioengineering, University of Washington, USA
| | - Omeed Yazdani
- Department of Bioengineering, University of Washington, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, USA
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, USA; Molecular Engineering & Sciences Institute, University of Washington, USA.
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, USA; Molecular Engineering & Sciences Institute, University of Washington, USA.
| |
Collapse
|
5
|
Dhiraj HS, Ishizuka F, Saeed M, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose responsive boronic acid-substituted amphiphilic block copolymer nanoparticles of high aspect ratio. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
You H, Zhuo C, Yan S, Wang E, Cao H, Liu S, Wang X. CO 2 Deprotection-Mediated Switchable Polymerization for Precise Construction of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shuo Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|