1
|
Lee K, Seong HG, Russell TP, Emrick T. Thiol- and Disulfide-Functionalized Polycyclooctene: Metathesis Polymerization, Degradation, and Reformation. ACS Macro Lett 2025:616-621. [PMID: 40314497 DOI: 10.1021/acsmacrolett.5c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The enormous global production and use of polymers and plastics, combined with slower and less efficient disposal and recycling methods, have led to a worldwide growth in plastic waste. Here, we describe an approach that builds degradability into macromolecular polyolefins through the design of telechelic oligomers with reactive functional groups that enables control over polymer deconstruction and reconstruction. Our work exploits disulfide-containing polymers that have emerged as promising cyclable materials due to their dynamic reversibility (bond formation and cleavage) driven by redox chemistry under mild conditions. Specifically, we describe the synthesis of a telechelic α,ω-dithiopolycyclooctene (PCOE) by ring-opening metathesis polymerization using a dithioacetate chain transfer agent, followed by deprotection to convert the chain-end thioacetates to thiols. This process was studied towards control over the degree of oxidation to yield disulfide-containing PCOE, followed by an evaluation of reductive degradation and oxidative repolymerization. Overall, this approach facilitates the production of disulfide-containing unsaturated polyolefins and the integration of degradable and reformable moieties into soluble, processable, metathesis-derived polymers.
Collapse
Affiliation(s)
- Kyoungwon Lee
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hong-Gyu Seong
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Liu K, Battson ME, Hu Z, Zhao Y, Rettner EM, Miscall J, Rorrer NA, Miyake GM. Upcycling Polynorbornene Derivatives into Chemically Recyclable Multiblock Linear and Thermoset Plastics. Angew Chem Int Ed Engl 2025; 64:e202423111. [PMID: 39824761 DOI: 10.1002/anie.202423111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Synthetic polymers have found widespread use, but their ineffective end-of-life treatment is causing a significant environmental and human health crisis. Here, we demonstrate the upcycling of polynorbornene derivatives (pNBEs) through their deconstruction into distinct oligomeric buildings blocks that can be repolymerized into chemically recyclable pNBEs-like multiblock polymers via dehydrogenative polymerization. The resulting materials exhibit diverse mechanical properties, while integrating high melting temperatures (Tm as high as 133 °C). Notably, this method could also enable the selective deconstruction of permanently cross-linked polydicyclopentadiene (pDCPD) thermosets into telechelic-OH functionalized oligomers, overcoming the significant challenges posed by their robust network structure in recycling and degradation. The resulting pDCPD oligomers can subsequently be repolymerized with macrodiols to create multiblock thermosets with tunable mechanical properties, including Young's modulus and tensile elongation. After use, upcycled plastics could be effectively deconstructed back to the oligomers for recovery and repolymerization. Overall, this work establishes an approach that can be utilized to upcycle pNBEs into previously inaccessible multiblock thermosets and thermoplastics with full recyclability, and may be generalizable to a range of polymers to shift their end-of-life waste disposal toward sustainable recovery and reuse.
Collapse
Affiliation(s)
- Kun Liu
- Department of Chemistry, Colorado State University Center Ave, Fort Collins, CO 80523, United States
| | - Megan E Battson
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Zhitao Hu
- Department of Chemistry, Colorado State University Center Ave, Fort Collins, CO 80523, United States
| | - Yucheng Zhao
- Department of Chemistry, Colorado State University Center Ave, Fort Collins, CO 80523, United States
| | - Emma M Rettner
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Joel Miscall
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University Center Ave, Fort Collins, CO 80523, United States
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
3
|
Zhao Y, Rettner EM, Battson ME, Hu Z, Miscall J, Rorrer NA, Miyake GM. Tailoring the Properties of Chemically Recyclable Polyethylene-Like Multiblock Polymers by Modulating the Branch Structure. Angew Chem Int Ed Engl 2025; 64:e202415707. [PMID: 39307689 DOI: 10.1002/anie.202415707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 11/06/2024]
Abstract
Developing plastics that fill the need of polyolefins yet are more easily recyclable is a critical need to address the plastic waste crisis. However, most efforts in this vein have focused on high-density polyethylene (PE), while many different types of PE exist. To create broadly sustainable PE with modular properties, we present the synthesis, characterization, and demonstration of materials applications for chemically recyclable PE-like multiblock polymers prepared from distinct hard and soft blocks using ruthenium-catalyzed dehydrogenative polymerization. By altering the branching pattern within the soft blocks, a series of PE-like multiblock polymers were synthesized with tunable glass transition temperatures (Tg) while maintaining consistent high melting temperatures (Tm). A clear U-shape trend between Tg and mechanical properties was found, showcasing their potential as sustainable materials with tailored properties spanning commercial linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). These materials offer adjustable adhesive strength to metal and demonstrate chemical recyclability and selective depolymerization in mixed plastic streams, promoting circularity and separation.
Collapse
Affiliation(s)
- Yucheng Zhao
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma M Rettner
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Megan E Battson
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhitao Hu
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Joel Miscall
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Foster JC, Damron JT, Zheng J, Guan C, Popovs I, Rahman MA, Galan NJ, Dishner IT, Saito T. Polyalkenamers as Drop-In Additives for Ring-Opening Metathesis Polymerization: A Promising Upcycling Paradigm. J Am Chem Soc 2024. [PMID: 39470583 DOI: 10.1021/jacs.4c10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report a distinct strategy to upcycle waste polyalkenamers such as polybutadiene into new, performance-advantaged materials by using them as drop-in additives for ring-opening metathesis polymerization (ROMP). The polyalkenamers serve as competent chain-transfer agents in ROMPs of common classes of cyclic olefin monomers, facilitating good molecular weight control, allowing low Ru catalyst loadings, and enabling efficient incorporation of the polyalkenamer into the synthesized polymeric material. We successfully demonstrate ROMP using model polyalkenamers and translate these learnings to leverage commercial polybutadiene and acrylonitrile butadiene styrene (ABS) as chain transfer agents for ROMP copolymerizations. Critically, our strategy is shown to be highly efficient and operationally simple, quantitatively incorporating the polyalkenamer and inheriting aspects of its thermomechanical performance. Our results highlight a promising pathway for the upcycling of polyalkenamers and provide an alternative to existing deconstruction and functional upcycling strategies.
Collapse
Affiliation(s)
- Jeffrey C Foster
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jackie Zheng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Chao Guan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Md Anisur Rahman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nicholas J Galan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Isaiah T Dishner
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Pal A, Wong AR, Lamb JR. Chemically Recyclable, High Molar Mass Polyoxazolidinones via Ring-Opening Metathesis Polymerization. ACS Macro Lett 2024; 13:502-507. [PMID: 38625148 DOI: 10.1021/acsmacrolett.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The development of robust methods for the synthesis of chemically recyclable polymers with tunable properties is necessary for the design of next-generation materials. Polyoxazolidinones (POxa), polymers with five-membered urethanes in their backbones, are an attractive target because they are strongly polar and have high thermal stability, but existing step-growth syntheses limit molar masses and methods to chemically recycle POxa to monomer are rare. Herein, we report the synthesis of high molar mass POxa via ring-opening metathesis polymerization of oxazolidinone-fused cyclooctenes. These novel polymers show <5% mass loss up to 382-411 °C and have tunable glass transition temperatures (14-48 °C) controlled by the side chain structure. We demonstrate facile chemical recycling to monomer and repolymerization despite moderately high monomer ring-strain energies, which we hypothesize are facilitated by the conformational restriction introduced by the fused oxazolidinone ring. This method represents the first chain growth synthesis of POxa and provides a versatile platform for the study and application of this emerging subclass of polyurethanes.
Collapse
Affiliation(s)
- Arpan Pal
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Allison R Wong
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Jessica R Lamb
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Sample CS, Hoehn BD, Hillmyer MA. Cross-Linked Polyolefins through Tandem ROMP/Hydrogenation. ACS Macro Lett 2024; 13:395-400. [PMID: 38502944 DOI: 10.1021/acsmacrolett.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cross-linked polyolefins have important advantages over their thermoplastic analogues, particularly improved impact strength and abrasion resistance, as well as increased chemical and thermal stability; however, most strategies for their production involve postpolymerization cross-linking of polyolefin chains. Here, a tandem ring-opening metathesis polymerization (ROMP)/hydrogenation approach is presented. Cyclooctene (COE)-co-dicyclopentadiene (DCPD) networks are first synthesized using ROMP, after which the dispersed Ru metathesis catalyst is activated for hydrogenation through the addition of hydrogen gas. The reaction temperature for hydrogenation must be sufficiently high to allow mobility within the system, as dictated by thermal transitions (i.e., glass and melting transitions) of the polymeric matrix. COE-rich materials exhibit branched-polyethylene-like crystallinity (25% crystallinity) and melting points (Tm = 107 °C), as well as excellent ductility (>750% extension), while majority DCPD materials are glassy (Tg = 84 °C) and much stiffer (E = 710 MPa); all materials exhibit high tensile toughness. Importantly, hydrogenation of olefins in these cross-linked materials leads to notable improvements in oxidative stability, as saturated networks do not experience the same substantial degradation of mechanical performance as their unsaturated counterparts upon prolonged exposure to air.
Collapse
Affiliation(s)
- Caitlin S Sample
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Brenden D Hoehn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
7
|
Schwab S, Baur M, Nelson TF, Mecking S. Synthesis and Deconstruction of Polyethylene-type Materials. Chem Rev 2024; 124:2327-2351. [PMID: 38408312 PMCID: PMC10941192 DOI: 10.1021/acs.chemrev.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Polyethylene deconstruction to reusable smaller molecules is hindered by the chemical inertness of its hydrocarbon chains. Pyrolysis and related approaches commonly require high temperatures, are energy-intensive, and yield mixtures of multiple classes of compounds. Selective cleavage reactions under mild conditions (
Collapse
Affiliation(s)
- Simon
T. Schwab
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Maximilian Baur
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Taylor F. Nelson
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
8
|
Jang YJ, Nguyen S, Hillmyer MA. Chemically Recyclable Linear and Branched Polyethylenes Synthesized from Stoichiometrically Self-Balanced Telechelic Polyethylenes. J Am Chem Soc 2024; 146:4771-4782. [PMID: 38323928 DOI: 10.1021/jacs.3c12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
High-density polyethylene (HDPE) is a widely used commercial plastic due to its excellent mechanical properties, chemical resistance, and water vapor barrier properties. However, less than 10% of HDPE is mechanically recycled, and the chemical recycling of HDPE is challenging due to the inherent strength of the carbon-carbon backbone bonds. Here, we report chemically recyclable linear and branched HDPE with sparse backbone ester groups synthesized from the transesterification of telechelic polyethylene macromonomers. Stoichiometrically self-balanced telechelic polyethylenes underwent transesterification polymerization to produce the PE-ester samples with high number-average molar masses of up to 111 kg/mol. Moreover, the transesterification polymerization of the telechelic polyethylenes and the multifunctional diethyl 5-(hydroxymethyl)isophthalate generated branched PE-esters. Thermal and mechanical properties of the PE-esters were comparable to those of commercial HDPE and tunable through control of the ester content in the backbone. In addition, branched PE-esters showed higher levels of melt strain hardening compared with linear versions. The PE-ester was depolymerized into telechelic macromonomers through straightforward methanolysis, and the resulting macromonomers could be effectively repolymerized to generate a high molar mass recycled PE-ester sample. This is a new and promising method for synthesizing and recycling high-molar-mass linear and branched PE-esters, which are competitive with HDPE and have easily tailorable properties.
Collapse
Affiliation(s)
- Yoon-Jung Jang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sam Nguyen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Hoehn BD, Kellstedt EA, Hillmyer MA. Tough polycyclooctene nanoporous membranes from etchable block copolymers. SOFT MATTER 2024; 20:437-448. [PMID: 38112234 DOI: 10.1039/d3sm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Porous materials with pore dimensions of the nanometer length scale are useful as nanoporous membranes. ABA triblock copolymers are convenient precursors to such nanoporous materials if the end blocks are easily degradable (e.g., polylactide or PLA), leaving nanoporous polymeric membranes (NPMs) if in thin film form. The membrane properties are dependent on midblock monomer structure, triblock copolymer composition, overall molar mass, and polymer processing conditions. Polycyclooctene (PCOE) NPMs were prepared using this method, with tunable pore sizes on the order of tens of nanometers. Solvent casting was shown to eliminate film defects and allowed achievement of superior mechanical properties over melt processing techniques, and PCOE NPMs were found to be very tough, a major advance over previously reported NPMs. Oxygen plasma etching was used to remove the surface skin layer to obtain membranes with higher surface porosity, membrane hydrophilicity, and flux of both air and water. This is a straightforward method to reliably produce highly tough NPMs with high levels of porosity and hydrophilic surface properties.
Collapse
Affiliation(s)
- Brenden D Hoehn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0431, USA
| | | | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA.
| |
Collapse
|
10
|
Johnson AM, Johnson JA. Thermally Robust yet Deconstructable and Chemically Recyclable High-Density Polyethylene (HDPE)-Like Materials Based on Si-O Bonds. Angew Chem Int Ed Engl 2023:e202315085. [PMID: 37903133 DOI: 10.1002/anie.202315085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Polyethylene (PE) is the most widely produced synthetic polymer. By installing chemically cleavable bonds into the backbone of PE, it is possible to produce chemically deconstructable PE derivatives; to date, however, such designs have primarily relied on carbonyl- and olefin-related functional groups. Bifunctional silyl ethers (BSEs; SiR2 (OR'2 )) could expand the functional scope of PE mimics as they possess strong Si-O bonds and facile chemical tunability. Here, we report BSE-containing high-density polyethylene (HDPE)-like materials synthesized through a one-pot catalytic ring-opening metathesis polymerization (ROMP) and hydrogenation sequence. The crystallinity of these materials can be adjusted by varying the BSE concentration or the steric bulk of the Si-substituents, providing handles to control thermomechanical properties. Two methods for chemical recycling of HDPE mimics are introduced, including a circular approach that leverages acid-catalyzed Si-O bond exchange with 1-propanol. Additionally, despite the fact that the starting HDPE mimics were synthesized by chain-growth polymerization (ROMP), we show that it is possible to recover the molar mass and dispersity of recycled HDPE products using step-growth Si-O bond formation or exchange, generating high molecular weight recycled HDPE products with mechanical properties similar to commercial HDPE.
Collapse
Affiliation(s)
- Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Ring-Opening Metathesis Polymerization and Related Olefin Metathesis Reactions in Benzotrifluoride as an Environmentally Advantageous Medium. Int J Mol Sci 2022; 24:ijms24010671. [PMID: 36614111 PMCID: PMC9820898 DOI: 10.3390/ijms24010671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
A tremendous number of solvents, either as liquids or vapors, contaminate the environment on a daily basis worldwide. Olefin metathesis, which has been widely used as high-yielding protocols for ring-opening metathesis polymerization (ROMP), ring-closing metathesis (RCM), and isomerization reactions, is typically performed in toxic and volatile solvents such as dichloromethane. In this study, the results of our systematic experiments with the Grubbs G1, G2, and Hoveyda-Grubbs HG2 catalysts proved that benzotrifluoride (BTF) can replace dichloromethane (DCM) in these reactions, providing high yields and similar or even higher reaction rates in certain cases. The ROMP of norbornene resulted not only in high yields but also in polynorbornenes with a high molecular weight at low catalyst loadings. Ring-closing metathesis (RCM) experiments proved that, with the exception of the G1 catalyst, RCM occurs with similar high efficiencies in BTF as in DCM. It was found that isomerization of (Z)-but-2-ene-1,4-diyl diacetate with the G2 and HG2 catalysts proceeds at significantly higher initial rates in BTF than in DCM, leading to rapid isomerization with high yields in a short time. Overall, BTF is a suitable solvent for olefin metathesis, such as polymer syntheses by ROMP and the ring-closing and isomerization reactions.
Collapse
|
12
|
Zervoudakis AJ, Sample CS, Peng X, Lake D, Hillmyer MA, Ellison CJ. Dihydroxy Polyethylene Additives for Compatibilization and Mechanical Recycling of Polyethylene Terephthalate/Polyethylene Mixed Plastic Waste. ACS Macro Lett 2022; 11:1396-1402. [PMID: 36469938 DOI: 10.1021/acsmacrolett.2c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymer blend compatibilization is an attractive solution for mechanical recycling of mixed plastic waste because it can result in tough blends. In this work, hydroxy-telechelic polyethylene (HOPEOH) reactive additives were used to compatibilize blends of polyethylene terephthalate (PET) and linear low-density polyethylene (LLDPE). HOPEOH additives were synthesized with molar masses of 1-20 kg/mol by ring-opening metathesis polymerization of cyclooctene followed by catalytic hydrogenation. Melt-compounded blends containing 0.5 wt % HOPEOH displayed reduced dispersed phase LLDPE particle sizes with ductilities comparable to virgin PET and almost seven times greater than neat blends, regardless of additive molar mass. In contrast, analogous blends containing monohydroxy PE additives of comparable molar masses did not result in compatibilization even at 2 wt % loading. The results strongly suggest that both hydroxy ends of HOPEOH undergo transesterification reactions during melt mixing with PET to form predominantly PET-PE-PET triblock copolymers at the interface of the dispersed and matrix phases. We hypothesize that the triblock copolymer compatibilizers localized at the interface form trapped entanglements of the PE midblocks with nearby LLDPE homopolymer chains by a hook-and-clasp mechanism. Finally, HOPEOH compounds were able to efficiently compatibilize blends derived solely from postconsumer PET and PE bottles and film, suggesting their industrial applicability.
Collapse
Affiliation(s)
- Aristotle J Zervoudakis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Caitlin S Sample
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Davis Lake
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Ji M, Zheng S, Zou C, Chen M. Ruthenium-Catalyzed Diazoacetates/Cyclooctene Metathesis Copolymerization. Polym Chem 2022. [DOI: 10.1039/d2py00886f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a powerful synthetic tool, ruthenium-catalyzed ring-opening metathesis polymerization (ROMP) has been widely utilized to prepare diverse polymers. In this contribution, we demonstrated the polymerization of cyclooctene in the presence...
Collapse
|
14
|
Ma Z, Ji M, Pang W, Si G, Chen M. The synthesis and properties research of functionalized polyolefins. NEW J CHEM 2022. [DOI: 10.1039/d2nj04335a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work demonstrated a tandem ROMP/hydrogenation approach for the preparation of functionalized polyolefins and their properties were investigated.
Collapse
Affiliation(s)
- Zhanshan Ma
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Minghang Ji
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wenmin Pang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guifu Si
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Min Chen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
15
|
Naito T, Kanazawa A, Aoshima S. Tandem polymerization consisting of cyclotrimerization and the Tishchenko reaction: synthesis of acid- and alkali-degradable polymers with cyclic acetal and ester structures in the main chain. Polym Chem 2022. [DOI: 10.1039/d2py01038k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tandem polymerization consisting of cyclotrimerization and the Tishchenko reaction was developed, which yielded acid- and alkali-degradable polymers.
Collapse
Affiliation(s)
- Tadashi Naito
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|