1
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
2
|
Heng X, Shan F, Yang H, Hu J, Feng R, Tian W, Chen G, Chen H. Glycopolymers With On/Off Anchors: Confinement Effect on Regulating Dendritic Cells. Adv Healthc Mater 2023; 12:e2301536. [PMID: 37590030 DOI: 10.1002/adhm.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Insufficient activation or over-activation of T cells due to the dendritic cells (DCs) state can cause negative effects on immunotherapy, making it crucial for DCs to maintain different states in different treatments. Polysaccharides are one of the most studied substances to promote DCs maturation. However, in many methods, optimizing the spatial dimension of the interaction between polysaccharides and cells is often overlooked. Therefore, in this study, a new strategy from the perspective of spatial dimension is proposed to regulate the efficacy of polysaccharides in promoting DCs maturation. An anchoring molecule (DMA) is introduced to existing glycopolymers for the confinement effect, and the effect can be turned off by oxidation of DMA. Among the prepared on-confined (PMD2 ), off-confined (PMD2 -O), and norm (PM2 ) glycopolymers, PMD2 and PMD2 -O show the best and worst results, respectively, in terms of the amount of binding to DCs and the effect on promoting DCs maturation. This sufficiently shows that the turn-on and off of confinement effect can regulate the maturation of DCs by polysaccharides. Based on the all-atom molecular dynamics (MD) simulation, the mechanism of difference in the confinement effect is explained. This simple method can also be used to regulate other molecule-cell interactions to guide cell behavior.
Collapse
Affiliation(s)
- Xingyu Heng
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Fangjian Shan
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - He Yang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Hu
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Ruyan Feng
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Wende Tian
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Gaojian Chen
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Hong Chen
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
3
|
Guarra F, Colombo G. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. J Chem Theory Comput 2023; 19:5315-5333. [PMID: 37527403 PMCID: PMC10448727 DOI: 10.1021/acs.jctc.3c00513] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/03/2023]
Abstract
The design of new biomolecules able to harness immune mechanisms for the treatment of diseases is a prime challenge for computational and simulative approaches. For instance, in recent years, antibodies have emerged as an important class of therapeutics against a spectrum of pathologies. In cancer, immune-inspired approaches are witnessing a surge thanks to a better understanding of tumor-associated antigens and the mechanisms of their engagement or evasion from the human immune system. Here, we provide a summary of the main state-of-the-art computational approaches that are used to design antibodies and antigens, and in parallel, we review key methodologies for epitope identification for both B- and T-cell mediated responses. A special focus is devoted to the description of structure- and physics-based models, privileged over purely sequence-based approaches. We discuss the implications of novel methods in engineering biomolecules with tailored immunological properties for possible therapeutic uses. Finally, we highlight the extraordinary challenges and opportunities presented by the possible integration of structure- and physics-based methods with emerging Artificial Intelligence technologies for the prediction and design of novel antigens, epitopes, and antibodies.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|