1
|
Yang B, Lledos M, Akhtar R, Ciccone G, Jiang L, Russo E, Rajput S, Jin C, Angelereou MGF, Arnold T, Rawle J, Vassalli M, Marlow M, Adams DJ, Zelzer M. Surface-controlled spatially heterogeneous physical properties of a supramolecular gel with homogeneous chemical composition. Chem Sci 2021; 12:14260-14269. [PMID: 34760212 PMCID: PMC8565383 DOI: 10.1039/d1sc04671c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/09/2021] [Indexed: 01/15/2023] Open
Abstract
Controlling supramolecular self-assembly across multiple length scales to prepare gels with localised properties is challenging. Most strategies concentrate on fabricating gels with heterogeneous components, where localised properties are generated by the stimuli-responsive component. Here, as an alternative approach, we use a spiropyran-modified surface that can be patterned with light. We show that light-induced differences in surface chemistry can direct the bulk assembly of a low molecular weight gelator, 2-NapAV, meaning that mechanical gel properties can be controlled by the surface on which the gel is grown. Using grazing incidence X-ray diffraction and grazing incidence small angle X-ray scattering, we demonstrate that the origin of the different gel properties relates to differences in the architectures of the gels. This provides a new method to prepare a single domain (i.e., chemically homogeneous) hydrogel with locally controlled (i.e., mechanically heterogeneous) properties.
Collapse
Affiliation(s)
- Bin Yang
- Department of Pharmacy, University of Nottingham Nottingham NG2 7RD UK
| | - Marina Lledos
- Department of Pharmacy, University of Nottingham Nottingham NG2 7RD UK
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool Liverpool L69 3GH UK
| | - Giuseppe Ciccone
- Centre for the Cellular Microenvironment, University of Glasgow Glasgow G12 8LT UK
| | - Long Jiang
- Department of Pharmacy, University of Nottingham Nottingham NG2 7RD UK
| | - Emanuele Russo
- Department of Pharmacy, University of Nottingham Nottingham NG2 7RD UK
| | - Sunil Rajput
- Department of Pharmacy, University of Nottingham Nottingham NG2 7RD UK
| | - Chunyu Jin
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge CB3 0AS UK
| | | | - Thomas Arnold
- Diamond Light Source Ltd Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- European Spallation Source ERIC P. O. Box 176 SE-221 00 Lund Sweden
- STFC, Rutherford Appleton Laboratory Chilton Didcot OX11 0QX UK
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Jonathan Rawle
- Diamond Light Source Ltd Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, University of Glasgow Glasgow G12 8LT UK
| | - Maria Marlow
- Department of Pharmacy, University of Nottingham Nottingham NG2 7RD UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Mischa Zelzer
- Department of Pharmacy, University of Nottingham Nottingham NG2 7RD UK
| |
Collapse
|
2
|
Datta R, Yelash L, Schmid F, Kummer F, Oberlack M, Lukáčová-Medvid’ová M, Virnau P. Shear-Thinning in Oligomer Melts-Molecular Origins and Applications. Polymers (Basel) 2021; 13:2806. [PMID: 34451343 PMCID: PMC8399857 DOI: 10.3390/polym13162806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/04/2022] Open
Abstract
We investigate the molecular origin of shear-thinning in melts of flexible, semiflexible and rigid oligomers with coarse-grained simulations of a sheared melt. Entanglements, alignment, stretching and tumbling modes or suppression of the latter all contribute to understanding how macroscopic flow properties emerge from the molecular level. In particular, we identify the rise and decline of entanglements with increasing chain stiffness as the major cause for the non-monotonic behaviour of the viscosity in equilibrium and at low shear rates, even for rather small oligomeric systems. At higher shear rates, chains align and disentangle, contributing to shear-thinning. By performing simulations of single chains in shear flow, we identify which of these phenomena are of collective nature and arise through interchain interactions and which are already present in dilute systems. Building upon these microscopic simulations, we identify by means of the Irving-Kirkwood formula the corresponding macroscopic stress tensor for a non-Newtonian polymer fluid. Shear-thinning effects in oligomer melts are also demonstrated by macroscopic simulations of channel flows. The latter have been obtained by the discontinuous Galerkin method approximating macroscopic polymer flows. Our study confirms the influence of microscopic details in the molecular structure of short polymers such as chain flexibility on macroscopic polymer flows.
Collapse
Affiliation(s)
- Ranajay Datta
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Germany; (R.D.); (F.S.)
| | - Leonid Yelash
- Institute of Mathematics, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Germany;
| | - Friederike Schmid
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Germany; (R.D.); (F.S.)
| | - Florian Kummer
- Department of Mechanical Engineering, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany; (F.K.); (M.O.)
| | - Martin Oberlack
- Department of Mechanical Engineering, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany; (F.K.); (M.O.)
| | | | - Peter Virnau
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Germany; (R.D.); (F.S.)
| |
Collapse
|
3
|
Ali I, Shah LA. Rheological investigation of the viscoelastic thixotropic behavior of synthesized polyethylene glycol-modified polyacrylamide hydrogels using different accelerators. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03163-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Affiliation(s)
- Giovanni Ianniruberto
- Department of Chemical, Materials, and Production Engineering, Federico II University, Piazzale Tecchio 80, 80125 Napoli, Italy
| | - Giuseppe Marrucci
- Department of Chemical, Materials, and Production Engineering, Federico II University, Piazzale Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
5
|
Kong X, Han Y, Chen W, Cui F, Li Y. Understanding conformational and dynamical evolution of semiflexible polymers in shear flow. SOFT MATTER 2019; 15:6353-6361. [PMID: 31298682 DOI: 10.1039/c9sm00600a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A clear description of the conformational and dynamical evolution of polymer chains in shear flow is the fundamental basis of microfluidic separations and macroscopic rheological behaviors. We employ graph theory analysis to analyze the local deformation and dynamics of linear polymer chains with different rigidities in shear flow based on the simulation trajectories that record the instantaneous conformations and dynamics. Our results show that all semiflexible chains experience quasi-periodic tumbling motions when the shear strain overwhelms the U-shape (or S-shape) deformation energy barrier. More interestingly, the contact map provides solid evidence for the asymmetric deformation in the whole tumbling motion. In the stretching process: at small and intermediate shear strength, flexible polymers show a quasi-affine deformation while semiflexible ones are initially unfolded from the center of the chains, then both of them follow the extension with half dumbbell- or dumbbell-like ends; at high shear strength, all polymer chains present only a dumbbell-like extension. In the collapse process, all chains prefer to initiate the folding from chain ends. This finding can facilitate our understanding on how semiflexible polymer chains relax and dissipate the stress in shear flow.
Collapse
Affiliation(s)
- Xiangxin Kong
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.
| | | | | | | | | |
Collapse
|
6
|
Zhang JZ, Peng XY, Liu S, Jiang BP, Ji SC, Shen XC. The Persistence Length of Semiflexible Polymers in Lattice Monte Carlo Simulations. Polymers (Basel) 2019; 11:E295. [PMID: 30960279 PMCID: PMC6419224 DOI: 10.3390/polym11020295] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/10/2023] Open
Abstract
While applying computer simulations to study semiflexible polymers, it is a primary task to determine the persistence length that characterizes the chain stiffness. One frequently asked question concerns the relationship between persistence length and the bending constant of applied bending potential. In this paper, theoretical persistence lengths of polymers with two different bending potentials were analyzed and examined by using lattice Monte Carlo simulations. We found that the persistence length was consistent with theoretical predictions only in bond fluctuation model with cosine squared angle potential. The reason for this is that the theoretical persistence length is calculated according to a continuous bond angle, which is discrete in lattice simulations. In lattice simulations, the theoretical persistence length is larger than that in continuous simulations.
Collapse
Affiliation(s)
- Jing-Zi Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xiang-Yao Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Shan Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Shi-Chen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
7
|
Chen R, Poling-Skutvik R, Howard MP, Nikoubashman A, Egorov SA, Conrad JC, Palmer JC. Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions. SOFT MATTER 2019; 15:1260-1268. [PMID: 30444237 DOI: 10.1039/c8sm01834k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The hierarchical structure and dynamics of polymer solutions control the transport of nanoparticles (NPs) through them. Here, we perform multi-particle collision dynamics simulations of solutions of semiflexible polymer chains with tunable persistence length lp to investigate the effect of chain stiffness on NP transport. The NPs exhibit two distinct dynamical regimes - subdiffusion on short time scales and diffusion on long time scales. The long-time NP diffusivities are compared with predictions from the Stokes-Einstein relation (SER), mode-coupling theory (MCT), and a recent polymer coupling theory (PCT). Increasing deviations from the SER as the polymer chains become more rigid (i.e. as lp increases) indicate that the NP motions become decoupled from the bulk viscosity of the polymer solution. Likewise, polymer stiffness leads to deviations from PCT, which was developed for fully flexible chains. Independent of lp, however, the long-time diffusion behavior is well-described by MCT, particularly at high polymer concentration. We also observed that the short-time subdiffusive dynamics are strongly dependent on polymer flexibility. As lp is increased, the NP dynamics become more subdiffusive and decouple from the dynamics of the polymer chain center-of-mass. We posit that these effects are due to differences in the segmental mobility of the semiflexible chains.
Collapse
Affiliation(s)
- Renjie Chen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu L, Chen J, An L. Individual circular polyelectrolytes under shear flow. J Chem Phys 2018; 149:163316. [PMID: 30384673 DOI: 10.1063/1.5028406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Individual circular polyelectrolytes in simple shear flow are studied by means of mesoscale hydrodynamic simulations, revealing the complex coupling effects of shear rate, electrostatic interaction, and circular architecture on their conformational and dynamical properties. Shear flow deforms the polyelectrolyte and strips condensed counterions from its backbone. A decrease in condensed counterions alters electrostatic interactions among charged particles, affecting shear-induced polymer deformation and orientation. Circular architecture determines the features of deformation and orientation. At weak electrostatic interaction strengths, the polyelectrolyte changes its shape from an oblate ring at small shear rates to a prolate ring at large shear rates, whereas strong electrostatic interaction strengths are associated with a transition from a prolate coil to a prolate ring. Circular polyelectrolytes exhibit tumbling and tank-treading motions in the range of large shear rates. Further study reveals a similarity between the roles of intramolecular electrostatic repulsion and chain rigidity in shear-induced dynamics.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jizhong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
9
|
Xu X, Chen J, An L. Probing relationship between structure and viscosity of unentangled polymers in steady shear flow. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9129-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Nikoubashman A, Howard MP. Equilibrium Dynamics and Shear Rheology of Semiflexible Polymers in Solution. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Michael P. Howard
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|