1
|
Özen İ, Wang X. Biomedicine: electrospun nanofibrous hormonal therapies through skin/tissue—a review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- İlhan Özen
- Textile Engineering Department, Erciyes University, Melikgazi, Kayseri, Turkey
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| |
Collapse
|
2
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Bizeau J, Mertz D. Design and applications of protein delivery systems in nanomedicine and tissue engineering. Adv Colloid Interface Sci 2021; 287:102334. [PMID: 33341459 DOI: 10.1016/j.cis.2020.102334] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Proteins are biological macromolecules involved in a wide range of biological functions, which makes them very appealing as therapeutics agents. Indeed, compared to small molecule drugs, their endogenous nature ensures their biocompatibility and biodegradability, they can be used in a large range of applications and present a higher specificity and activity. However, they suffer from unfolding, enzymatic degradation, short half-life and poor membrane permeability. To overcome such drawbacks, the development of protein delivery systems to protect, carry and deliver them in a controlled way have emerged importantly these last years. In this review, the formulation of a wide panel of protein delivery systems either in the form of polymer or inorganic nanoengineered colloids and scaffolds are presented and the protein loading and release mechanisms are addressed. A section is also dedicated to the detection of proteins and the characterization methods of their release. Then, the main protein delivery systems developed these last three years for anticancer, tissue engineering or diabetes applications are presented, as well as the major in vivo models used to test them. The last part of this review aims at presenting the perspectives of the field such as the use of protein-rich material or the sequestration of proteins. This part will also deal with less common applications and gene therapy as an indirect method to deliver protein.
Collapse
|
4
|
Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa PF, Radacsi N, Williams GR. Protein encapsulation by electrospinning and electrospraying. J Control Release 2020; 329:1172-1197. [PMID: 33127450 DOI: 10.1016/j.jconrel.2020.10.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Given the increasing interest in the use of peptide- and protein-based agents in therapeutic strategies, it is fundamental to develop delivery systems capable of preserving the biological activity of these molecules upon administration, and which can provide tuneable release profiles. Electrohydrodynamic (EHD) techniques, encompassing electrospinning and electrospraying, allow the generation of fibres and particles with high surface area-to-volume ratios, versatile architectures, and highly controllable release profiles. This review is focused on exploring the potential of different EHD methods (including blend, emulsion, and co-/multi-axial electrospinning and electrospraying) for the development of peptide and protein delivery systems. An overview of the principles of each technique is first presented, followed by a survey of the literature on the encapsulation of enzymes, growth factors, antibodies, hormones, and vaccine antigens using EHD approaches. The possibility for localised delivery using stimuli-responsive systems is also explored. Finally, the advantages and challenges with each EHD method are summarised, and the necessary steps for clinical translation and scaled-up production of electrospun and electrosprayed protein delivery systems are discussed.
Collapse
Affiliation(s)
| | - Dan Lawson
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Lesley Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
5
|
Polley P, Gupta S, Singh R, Pradhan A, Basu SM, V. R, Yadava SK, Giri J. Protein–Sugar-Glass Nanoparticle Platform for the Development of Sustained-Release Protein Depots by Overcoming Protein Delivery Challenges. Mol Pharm 2019; 17:284-300. [DOI: 10.1021/acs.molpharmaceut.9b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Poulomi Polley
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Shivam Gupta
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Remya V.
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| |
Collapse
|
6
|
Farnaz R, Maryam S, Masoumeh J, Parvaneh S. Colloidal HSA – Graphene oxide nanosheets for sustained release of oxaliplatin: Preparation, release mechanism, cytotoxicity and electrochemical approaches. Colloids Surf B Biointerfaces 2018; 171:10-16. [DOI: 10.1016/j.colsurfb.2018.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022]
|
7
|
|
8
|
Karabin NB, Allen S, Kwon HK, Bobbala S, Firlar E, Shokuhfar T, Shull KR, Scott EA. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat Commun 2018; 9:624. [PMID: 29434200 PMCID: PMC5809489 DOI: 10.1038/s41467-018-03001-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Nanocarrier administration has primarily been restricted to intermittent bolus injections with limited available options for sustained delivery in vivo. Here, we demonstrate that cylinder-to-sphere transitions of self-assembled filomicelle (FM) scaffolds can be employed for sustained delivery of monodisperse micellar nanocarriers with improved bioresorptive capacity and modularity for customization. Modular assembly of FMs from diverse block copolymer (BCP) chemistries allows in situ gelation into hydrogel scaffolds following subcutaneous injection into mice. Upon photo-oxidation or physiological oxidation, molecular payloads within FMs transfer to micellar vehicles during the morphological transition, as verified in vitro by electron microscopy and in vivo by flow cytometry. FMs composed of multiple distinct BCP fluorescent conjugates permit multimodal analysis of the scaffold's non-inflammatory bioresorption and micellar delivery to immune cell populations for one month. These scaffolds exhibit highly efficient bioresorption wherein all components participate in retention and transport of therapeutics, presenting previously unexplored mechanisms for controlled nanocarrier delivery.
Collapse
Affiliation(s)
- Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sean Allen
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Ha-Kyung Kwon
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Emre Firlar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA
| | - Kenneth R Shull
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|