1
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
2
|
Cherney RJ, Anjanappa P, Selvakumar K, Batt DG, Brown GD, Rose AV, Vuppugalla R, Chen J, Pang J, Xu S, Yarde M, Tebben AJ, Paidi VR, Cvijic ME, Mathur A, Barrish JC, Mandlekar S, Zhao Q, Carter PH. BMS-813160: A Potent CCR2 and CCR5 Dual Antagonist Selected as a Clinical Candidate. ACS Med Chem Lett 2021; 12:1753-1758. [PMID: 34795864 DOI: 10.1021/acsmedchemlett.1c00373] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
BMS-813160 (compound 3) was identified as a potent and selective CCR2/5 dual antagonist. Compound 3 displayed good permeability at pH = 7.4 in PAMPA experiments and demonstrated excellent human liver microsome stability. Pharmacokinetic studies established that 3 had excellent oral bioavailability and exhibited low clearance in dog and cyno. Compound 3 was also studied in the mouse thioglycollate-induced peritonitis model, which confirmed its ability to inhibit the migration of inflammatory monocytes and macrophages. As a result of this profile, compound 3 was selected as a clinical candidate.
Collapse
Affiliation(s)
- Robert J. Cherney
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Prakash Anjanappa
- Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560099, India
| | - Kumaravel Selvakumar
- Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560099, India
| | - Douglas G. Batt
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Gregory D. Brown
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Anne V. Rose
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Ragini Vuppugalla
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Jing Chen
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Jian Pang
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Songmei Xu
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Melissa Yarde
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Andrew J. Tebben
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Venkatram Reddy Paidi
- Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560099, India
| | - Mary Ellen Cvijic
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Arvind Mathur
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Joel C. Barrish
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Sandhya Mandlekar
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Percy H. Carter
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
3
|
La Cruz TE, González-Bobes F, Eastgate MD, Sfouggatakis C, Zheng B, Kopp N, Xiao Y, Fan Y, Galindo KA, Pathirana C, Galella MA, Deerberg J. Scalable Asymmetric Synthesis of the All Cis Triamino Cyclohexane Core of BMS-813160. J Org Chem 2021; 87:1996-2011. [PMID: 34355895 DOI: 10.1021/acs.joc.1c01162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BMS-813160 is a pharmaceutical entity currently in development at Bristol Myers Squibb. Its defining structural feature is a unique chiral all cis triamino cyclohexane core. Medicinal and process chemistry groups at BMS have previously published synthesis strategies for chemotypes similar to the target molecule, but a streamlined approach amenable for longer-term supply was necessary. A new synthetic route was conceptualized, experimentally investigated, and determined to meet the criteria for efficiency that addressed key limitations of previous approaches. Adopting/optimizing the Trost asymmetric allylic amination desymmetrization methodology was a key tool used to produce a synthesis intermediate with high optical purity. In addition, developing a tandem Mannich-aza-Michael reaction to obviate the need for a Curtis/acylation sequence and a novel reductive amination/thermal lactamization to circumvent Freidinger-type pyrrolidone preparation are some of the synthesis improvements that enabled access to the target molecule to fulfill long-term supply requirements.
Collapse
Affiliation(s)
- Thomas E La Cruz
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Francisco González-Bobes
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Martin D Eastgate
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Chris Sfouggatakis
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Bin Zheng
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Nathaniel Kopp
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | | | | | | | - Charles Pathirana
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Michael A Galella
- Analytical Strategy & Operations, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | | |
Collapse
|