1
|
He B, Karroum NB, Gealageas R, Mauvais FX, Warenghem S, Roignant M, Kraupner N, Lam BV, Azaroual N, Ultré V, Rech A, Lesire L, Couturier C, Leroux F, van Endert P, Deprez B, Deprez-Poulain R. Discovery of New Nanomolar Selective IRAP Inhibitors. J Med Chem 2025; 68:4168-4195. [PMID: 39916550 PMCID: PMC11874008 DOI: 10.1021/acs.jmedchem.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Among the M1 family of oxytocinase aminopeptidases, insulin-regulated aminopeptidase IRAP, is an emerging drug target implicated in various biological pathways and particularly in MHC-I antigen presentation through amino-terminal trimming of exogenous cross-presented peptides. A few series of inhibitors inspired either by angiotensin IV, one of IRAP substrates, or by bestatin a pan aminopeptidase inhibitor, have been disclosed. However, the variety and number of chemotypes remains relatively limited. Here we disclose the design and optimization of a series of hydroxamic acids IRAP inhibitors bearing a 5-substituted indole. Docking studies of the best compound 43 (BDM_92499), a single-digit nanomolar and selective inhibitor of IRAP, suggest an original binding mode and highlight the substituent on the indole and a primary amide as groups driving selectivity. Several inhibitors in the series displayed IRAP-dependent inhibition of antigen cross-presentation. These results pave the way to the development of novel therapeutic agents targeting IRAP.
Collapse
Affiliation(s)
- Ben He
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nour Bou Karroum
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - François-Xavier Mauvais
- Institut
Necker Enfants Malades, Université
Paris Cité, INSERM, CNRS, Paris F-75015, France
- Service
de Physiologie—Explorations Fonctionnelles, AP-HP, Hôpital
Robert-Debré, Paris F-75019, France
| | - Sandrine Warenghem
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Matthieu Roignant
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nicolas Kraupner
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Bao Vy Lam
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nathalie Azaroual
- University
Lille, CHU Lille, ULR 7365—GRITA—Groupe de Recherche
Sur Les Formes Injectables Et Les Technologies Associées, Lille F-59000, France
| | - Vincent Ultré
- University
Lille, Plateau RMN Pharmacie, UFR3S-Pharmacie, Lille F-59000, France
| | - Alexandre Rech
- University
Lille, Plateau RMN Pharmacie, UFR3S-Pharmacie, Lille F-59000, France
| | - Laetitia Lesire
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Cyril Couturier
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| | - Peter van Endert
- Institut
Necker Enfants Malades, Université
Paris Cité, INSERM, CNRS, Paris F-75015, France
- Service
Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants
Malades, Paris F-75015, France
| | - Benoit Deprez
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| | - Rebecca Deprez-Poulain
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| |
Collapse
|
2
|
Fougiaxis V, Barcherini V, Petrovic MM, Sierocki P, Warenghem S, Leroux F, Bou Karroum N, Petit-Cancelier F, Rodeschini V, Roche D, Deprez B, Deprez-Poulain R. First fragment-based screening identifies new chemotypes inhibiting ERAP1-metalloprotease. Eur J Med Chem 2024; 280:116926. [PMID: 39369482 DOI: 10.1016/j.ejmech.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) by small-molecules is being eagerly investigated for the treatment of various autoimmune diseases and in the field of immuno-oncology after its active involvement in antigen presentation and processing. Currently, ERAP1 inhibitors are at different stages of clinical development, which highlights its significance as a promising drug target. In the present work, we describe the first-ever successful identification of several ERAP1 inhibitors derived from a fragment-based screening approach. We applied an enzymatic activity assay to a large library of ∼3000 fragment entries in order to retrieve 32 hits. After a multi-faceted selection process, we prioritized 3 chemotypes for SAR optimization and strategic modifications provided 2 series (2-thienylacetic acid and rhodanine scaffolds) with improved analogues at the low micromolar range of ERAP1 inhibition. We report also evidence of selectivity against homologous aminopeptidase IRAP, combined with complementary in silico docking studies to predict the binding mode and site of inhibition. Our compounds can be the starting point for future fragment growing and rational drug development, incorporating new chemical modalities.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Valentina Barcherini
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Milena M Petrovic
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Pierre Sierocki
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Sandrine Warenghem
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Nour Bou Karroum
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | | | - Vincent Rodeschini
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Didier Roche
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France.
| |
Collapse
|
3
|
Hryczanek RP, Hackett AS, Rowland P, Chung CW, Convery MA, Holmes DS, Hutchinson JP, Kitchen S, Korczynska J, Law RP, Lea JD, Liddle J, Lonsdale R, Neu M, Nickels L, Phillipou A, Rowedder JE, Schneck JL, Scott-Stevens P, Sheehan H, Tayler CL, Temponeras I, Tinworth CP, Walker AL, Wojno-Picon J, Young RJ, Lindsay DM, Stratikos E. Optimization of Potent and Selective Cyclohexyl Acid ERAP1 Inhibitors Using Structure- and Property-Based Drug Design. ACS Med Chem Lett 2024; 15:2107-2114. [PMID: 39691536 PMCID: PMC11647717 DOI: 10.1021/acsmedchemlett.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) cleaves the N-terminal amino acids of peptides, which can then bind onto major histocompatibility class I (MHC-I) molecules for presentation onto the cell surface, driving the activation of adaptive immune responses. In cancer, overtrimming of mature antigenic peptides can reduce cytotoxic T-cell responses, and ERAP1 can generate self-antigenic peptides which contribute to autoimmune cellular responses. Therefore, modulation of ERAP1 activity has potential therapeutic indications for cancer immunotherapy and in autoimmune disease. Herein we describe the hit-to-lead optimization of a series of cyclohexyl acid ERAP1 inhibitors, found by X-ray crystallography to bind at an allosteric regulatory site. Structure-based drug design enabled a >1,000-fold increase in ERAP1 enzymatic and cellular activity, resulting in potent and selective tool molecules. For lead compound 7, rat pharmacokinetic properties showed moderate unbound clearance and oral bioavailability, thus highlighting the promise of the series for further optimization.
Collapse
Affiliation(s)
- Ross P. Hryczanek
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Andrew S. Hackett
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Paul Rowland
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Chun-wa Chung
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Máire A. Convery
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Duncan S. Holmes
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | | | - Semra Kitchen
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Justyna Korczynska
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Robert P. Law
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Jonathan D. Lea
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - John Liddle
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Richard Lonsdale
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Margarete Neu
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Leng Nickels
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Alex Phillipou
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - James E. Rowedder
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Jessica L. Schneck
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Paul Scott-Stevens
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Hester Sheehan
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Chloe L. Tayler
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - Ioannis Temponeras
- National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Attiki 15341, Greece
| | | | - Ann L. Walker
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | | | - Robert J. Young
- GSK, Medicines
Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.
| | - David M. Lindsay
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Efstratios Stratikos
- National
Center for Scientific Research “Demokritos”, Agia Paraskevi, Attiki 15341, Greece
| |
Collapse
|
4
|
Fougiaxis V, He B, Khan T, Vatinel R, Koutroumpa NM, Afantitis A, Lesire L, Sierocki P, Deprez B, Deprez-Poulain R. ERAP Inhibitors in Autoimmunity and Immuno-Oncology: Medicinal Chemistry Insights. J Med Chem 2024; 67:11597-11621. [PMID: 39011823 DOI: 10.1021/acs.jmedchem.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ben He
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Tuhina Khan
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rodolphe Vatinel
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | | | | | - Laetitia Lesire
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Pierre Sierocki
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Benoit Deprez
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Temponeras I, Samiotaki M, Koumantou D, Nikopaschou M, Kuiper JJW, Panayotou G, Stratikos E. Distinct modulation of cellular immunopeptidome by the allosteric regulatory site of ER aminopeptidase 1. Eur J Immunol 2023; 53:e2350449. [PMID: 37134263 DOI: 10.1002/eji.202350449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
ER aminopeptidase 1 (ERAP1) is an ER-resident aminopeptidase that excises N-terminal residues of peptides that then bind onto Major Histocompatibility Complex I molecules (MHC-I) and indirectly modulates adaptive immune responses. ERAP1 contains an allosteric regulatory site that accommodates the C-terminus of at least some peptide substrates, raising questions about its exact influence on antigen presentation and the potential of allosteric inhibition for cancer immunotherapy. We used an inhibitor that targets this regulatory site to study its effect on the immunopeptidome of a human cancer cell line. The immunopeptidomes of allosterically inhibited and ERAP1 KO cells contain high-affinity peptides with sequence motifs consistent with the cellular HLA class I haplotypes but are strikingly different in peptide composition. Compared to KO cells, allosteric inhibition did not affect the length distribution of peptides and skewed the peptide repertoire both in terms of sequence motifs and HLA allele utilization, indicating significant mechanistic differences between the two ways of disrupting ERAP1 function. These findings suggest that the regulatory site of ERAP1 plays distinct roles in antigenic peptide selection, which should be taken into consideration when designing therapeutic interventions targeting the cancer immunopeptidome.
Collapse
Affiliation(s)
- Ioannis Temponeras
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Pharmacy, University of Patras, Patra, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming,", Institute for Bioinnovation, Vari, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
| | - Martha Nikopaschou
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - George Panayotou
- Biomedical Sciences Research Center "Alexander Fleming,", Institute for Bioinnovation, Vari, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
6
|
Georgiadis D, Skoulikas N, Papakyriakou A, Stratikos E. Phosphinic Peptides as Tool Compounds for the Study of Pharmacologically Relevant Zn-Metalloproteases. ACS Pharmacol Transl Sci 2022; 5:1228-1253. [PMID: 36524013 PMCID: PMC9745897 DOI: 10.1021/acsptsci.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Phosphinic peptides constitute an important class of bioactive compounds that have found a wide range of applications in the field of biology and pharmacology of Zn-metalloproteases, the largest family of proteases in humans. They are designed to mimic the structure of natural substrates during their proteolysis, thus acting as mechanism-based, transition state analogue inhibitors. A combination of electrostatic interactions between the phosphinic acid group and the Zn cation as well as optimal noncovalent enzyme-ligand interactions can result in both high binding affinity for the desired target and selectivity against other proteases. Due to these unique properties, phosphinic peptides have been mainly employed as tool compounds for (a) the purposes of rational drug design by serving as ligands in X-ray crystal structures of target enzymes and allowing the identification of crucial interactions that govern optimal molecular recognition, and (b) the delineation of biological pathways where Zn-metalloproteases are key regulators. For the latter objective, inhibitors of the phosphinopeptidic type have been used either unmodified or after being transformed to probes of various types, thus expanding the arsenal of functional tools available to researchers. The aim of this review is to summarize all recent research achievements in which phosphinic peptides have played a central role as tool compounds in the understanding of the mechanism and biological functions of Zn-metalloproteases in both health and disease.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Nikolaos Skoulikas
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| | - Efstratios Stratikos
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| |
Collapse
|
7
|
D'Amico S, D'Alicandro V, Compagnone M, Tempora P, Guida G, Romania P, Lucarini V, Melaiu O, Falco M, Algeri M, Pende D, Cifaldi L, Fruci D. ERAP1 Controls the Interaction of the Inhibitory Receptor KIR3DL1 With HLA-B51:01 by Affecting Natural Killer Cell Function. Front Immunol 2021; 12:778103. [PMID: 34917091 PMCID: PMC8669763 DOI: 10.3389/fimmu.2021.778103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by major histocompatibility complex (MHC) class I molecules. Previously, we have shown that genetic or pharmacological inhibition of ERAP1 on murine and human tumor cell lines perturbs the engagement of NK cell inhibitory receptors Ly49C/I and Killer-cell Immunoglobulin-like receptors (KIRs), respectively, by their specific ligands (MHC class I molecules), thus leading to NK cell killing. However, the effect of ERAP1 inhibition in tumor cells was highly variable, suggesting that its efficacy may depend on several factors, including MHC class I typing. To identify MHC class I alleles and KIRs that are more sensitive to ERAP1 depletion, we stably silenced ERAP1 expression in human HLA class I-negative B lymphoblastoid cell line 721.221 (referred to as 221) transfected with a panel of KIR ligands (i.e. HLA-B*51:01, -Cw3, -Cw4 and -Cw7), or HLA-A2 which does not bind any KIR, and tested their ability to induce NK cell degranulation and cytotoxicity. No change in HLA class I surface expression was detected in all 221 transfectant cells after ERAP1 depletion. In contrast, CD107a expression levels were significantly increased on NK cells stimulated with 221-B*51:01 cells lacking ERAP1, particularly in the KIR3DL1-positive NK cell subset. Consistently, genetic or pharmacological inhibition of ERAP1 impaired the recognition of HLA-B*51:01 by the YTS NK cell overexpressing KIR3DL1*001, suggesting that ERAP1 inhibition renders HLA-B*51:01 molecules less eligible for binding to KIR3DL1. Overall, these results identify HLA-B*51:01/KIR3DL1 as one of the most susceptible combinations for ERAP1 inhibition, suggesting that individuals carrying HLA-B*51:01-like antigens may be candidates for immunotherapy based on pharmacological inhibition of ERAP1.
Collapse
Affiliation(s)
- Silvia D'Amico
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valerio D'Alicandro
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mirco Compagnone
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Patrizia Tempora
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giusy Guida
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paolo Romania
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Mattia Algeri
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Daniela Pende
- Laboratory of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|