1
|
Alcázar J, Anderson EA, Davies HML, Febrian R, Kelly CB, Noël T, Voight EA, Zarate C, Zysman-Colman E. Better Together: Catalyzing Innovation in Organic Synthesis via Academic-Industrial Consortia. Org Lett 2024; 26:2677-2681. [PMID: 38284620 DOI: 10.1021/acs.orglett.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Affiliation(s)
- Jesús Alcázar
- Global Discovery Chemistry, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Edward A Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rio Febrian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher B Kelly
- Discovery Process Research, Johnson & Johnson Innovative Medicine, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eric A Voight
- Discovery Research, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Cayetana Zarate
- Chemical Process R&D, Johnson & Johnson Innovative Medicine, Janssen-Cilag AG, Hochstrasse 201, 8200 Schaffhausen, Switzerland
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, North Haugh, KY16 9ST St Andrews, U.K
| |
Collapse
|
2
|
Ma X, Beard AM, Burgess SA, Darlak M, Newman JA, Nogle LM, Pietrafitta MJ, Smith DA, Wang X, Yue L. General Synthesis of Conformationally Constrained Noncanonical Amino Acids with C( sp3)-Rich Benzene Bioisosteres. J Org Chem 2024; 89:5010-5018. [PMID: 38532573 DOI: 10.1021/acs.joc.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Recent years have seen novel modalities emerge for the treatment of human diseases resulting in an increase in beyond rule of 5 (bRo5) chemical matter. As a result, synthetic innovations aiming to enable rapid access to complex bRo5 molecular entities have become increasingly valuable for medicinal chemists' toolkits. Herein, we report the general synthesis of a new class of noncanonical amino acids (ncAA) with a cyclopropyl backbone to achieve conformational constraint and bearing C(sp3)-rich benzene bioisosteres. We also demonstrate preliminary studies toward utilities of these ncAA as building blocks for medicinal chemistry research.
Collapse
Affiliation(s)
- Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Adam M Beard
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Samantha A Burgess
- Analytical Research & Development, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Miroslawa Darlak
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Justin A Newman
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Lisa M Nogle
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Mark J Pietrafitta
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - David A Smith
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Xiao Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Lei Yue
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Brady PB, Sorensen BK, Risi RM, Curtin ML, Mantei RA, Florjancic AS, Mastracchio A, Ji C, Kunzer AR, Lai C, Storer GE, Chan VS, Henry RF, Souers AJ, Michaelides MR, Judd AS, Hansen TM. Enabling, Decagram-Scale Synthesis of Macrocyclic MCL-1 Inhibitor ABBV-467. J Org Chem 2023; 88:15562-15568. [PMID: 37909857 DOI: 10.1021/acs.joc.3c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
ABBV-467 is a highly potent and selective MCL-1 inhibitor that was advanced to a phase I clinical trial for the treatment of multiple myeloma. Due to its large size and structural complexity, ABBV-467 is a challenging synthetic target. Herein, we describe the synthesis of ABBV-467 on a decagram scale, which enabled preclinical characterization. The strategy is convergent and stereoselective, featuring a hindered biaryl cross coupling, enantioselective hydrogenation, and conformationally preorganized macrocyclization by C-O bond formation as key steps.
Collapse
Affiliation(s)
- Patrick B Brady
- Centralized Organic Synthesis Group, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Bryan K Sorensen
- Centralized Organic Synthesis Group, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Roberto M Risi
- Centralized Organic Synthesis Group, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Michael L Curtin
- Centralized Organic Synthesis Group, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Robert A Mantei
- Centralized Organic Synthesis Group, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Alan S Florjancic
- Centralized Organic Synthesis Group, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Anthony Mastracchio
- Global Medicinal Chemistry, Small Molecule Therapeutic and Platform Technologies, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Cheng Ji
- Global Medicinal Chemistry, Small Molecule Therapeutic and Platform Technologies, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Aaron R Kunzer
- Global Medicinal Chemistry, Small Molecule Therapeutic and Platform Technologies, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Chunqiu Lai
- Centralized Organic Synthesis Group, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Gregory E Storer
- Center of Catalysis, Process Research and Development, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Vincent S Chan
- Center of Catalysis, Process Research and Development, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Rodger F Henry
- Analytical Sciences, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Andrew J Souers
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | | | - Andrew S Judd
- Global Medicinal Chemistry, Small Molecule Therapeutic and Platform Technologies, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - T Matthew Hansen
- Centralized Organic Synthesis Group, Small Molecule Therapeutic and Platform Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
4
|
Stegemann S, Moreton C, Svanbäck S, Box K, Motte G, Paudel A. Trends in oral small-molecule drug discovery and product development based on product launches before and after the Rule of Five. Drug Discov Today 2023; 28:103344. [PMID: 36442594 DOI: 10.1016/j.drudis.2022.103344] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/28/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
In 1997, the 'Rule of Five' (Ro5) suggested physicochemical limitations for orally administered drugs, based on the analysis of chemical libraries from the early 1990s. In this review, we report on the trends in oral drug product development by analyzing products launched between 1994 and 1997 and between 2013 and 2019. Our analysis confirmed that most new oral drugs are within the Ro5 descriptors; however, the number of new drug products of drugs with molecular weight (MW) and calculated partition coefficient (clogP) beyond the Ro5 has slightly increased. Analysis revealed that there is no single scientific or technological reason for this trend, but that it likely results from incremental advances are being made in molecular biology, target diversity, drug design, medicinal chemistry, predictive modeling, drug metabolism and pharmacokinetics, and drug delivery.
Collapse
Affiliation(s)
- Sven Stegemann
- Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria.
| | | | - Sami Svanbäck
- The Solubility Company Ltd, Viikinkaari 4, 00790 Helsinki, Finland
| | - Karl Box
- Pion Inc. (UK) Ltd, Forest Row, UK
| | - Geneviève Motte
- JEN Pharma Consulting, 182 Rue Henri Latour, 1450 Chastre, Belgium
| | - Amrit Paudel
- Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
5
|
Marvin CC, Greszler SN, Shelat BH, Voight EA. Synthesis of A-9758, an Inverse Agonist of Retinoic Acid-Related Orphan Receptor γt. ACS OMEGA 2022; 7:44383-44389. [PMID: 36506123 PMCID: PMC9730458 DOI: 10.1021/acsomega.2c06060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/17/2023]
Abstract
A-9758 is an inverse agonist of retinoic acid-related orphan receptor γt with well-characterized in vitro and in vivo anti-inflammatory activity. A chromatography-free decagram-scale synthesis of this compound was developed to support pre-clinical research activities. This route was designed to enable late-stage structure-activity relationship studies of the amide moiety and convergently uses a reductive alkylation sequence between indole and benzaldehyde intermediates. A key advantage of this strategy is the fact that the indole precursor can be alkylated at C2, as required for A-9758, or at C3 to provide access to an isomeric chemical series. Access to the critical indole fragment was expedited via an underutilized SnAr/reductive cyclization cascade sequence, and the benzaldehyde fragment was prepared in two steps from inexpensive 2,4-dichlorobenzoic acid.
Collapse
|
6
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Blanco MJ, Gardinier KM, Namchuk MN. Advancing New Chemical Modalities into Clinical Studies. ACS Med Chem Lett 2022; 13:1691-1698. [PMID: 36385931 PMCID: PMC9661701 DOI: 10.1021/acsmedchemlett.2c00375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Drug discovery and development has experienced an incredible paradigm shift in the past two decades. What once was considered a predominant R&D landscape of small molecules within a prescribed properties and mechanism space now includes an innovative wave of new chemical modalities. Scientists in the pharmaceutical industry can now strategize across a variety of modalities to find the best option to modulate a given target and provide treatment for a specific disease. We have witnessed a remarkable change not only in molecular design but also in creative approaches to drug delivery that have enabled advancement of novel modalities to clinical studies. In this Microperspective, we evaluate the critical differences between traditional small molecules and beyond rule of 5 compounds, peptides, oligonucleotides, and biologics for advancing into development, particularly their pharmacokinetic profiles and drug delivery strategies.
Collapse
Affiliation(s)
- Maria-Jesus Blanco
- Chemical
Sciences, Atavistik Bio, 75 Sidney Street, Cambridge Massachusetts 02139, United States
| | - Kevin M. Gardinier
- Discovery
Research, Karuna Therapeutics, 99 High Street Boston, Massachusetts 02110, United States
| | - Mark N. Namchuk
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 25 Shattuck Street Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Evolving New Chemistry: Biocatalysis for the Synthesis of Amine-Containing Pharmaceuticals. Catalysts 2022. [DOI: 10.3390/catal12060595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Biocatalysis has become an attractive tool in modern synthetic chemistry both in academic and industrial settings, offering access to enantiopure molecules. In industry, biocatalysis found use in small molecule pharmaceutical development. For several amine-containing drugs, biotransformations were applied in the process routes, improving the original syntheses employing classical chemical methods. This review illustrates how and why biocatalysis has been applied to create safer, more efficient and less costly processes for the manufacture of chiral amine-containing pharmaceuticals and alkaloids. Several enzyme classes have been applied to syntheses of natural products, pharmaceutical products and their intermediates, including transaminases, imine reductases, monoamine oxidases and Pictet-Spenglerases. The routes with and without application of biocatalysis are compared, and the potential of these enzyme classes in redesigned synthetic routes to natural products, alkaloids and high-value chemicals is evaluated, using syntheses of sitagliptin, suvorexant, PF-04449913, MK-7246, vernakalant, GSK-2879552, boceprevir and (−)-strictosidine as examples. Application of biocatalysis in the synthesis of amine-containing pharmaceuticals constitutes a greener alternative to transition metal-catalysed routes, facilitates installation of chiral amine functionalities at a late stage of the synthesis and provides exquisite stereocontrol. Opportunities and challenges of biocatalysis for the synthesis of chiral amines are reviewed with respect to use in drug discovery and development.
Collapse
|