1
|
Shrestha P, Patel NL, Kalen JD, Usama SM, Schnermann MJ. Tracking the Fate of Therapeutic Proteins Using Ratiometric Imaging of Responsive Shortwave Infrared Probes. J Am Chem Soc 2025. [PMID: 40025700 DOI: 10.1021/jacs.4c15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Monoclonal antibodies (mAbs) are essential agents for cancer treatment and diagnosis. Advanced optical imaging strategies have the potential to address specific questions regarding their complex in vivo life cycle. This study presents responsive shortwave infrared (SWIR) probes and an associated imaging scheme to assess mAb biodistribution, cellular uptake, and proteolysis. Specifically, we identify a Pegylated benzo-fused norcyanine derivative (Benz-NorCy7) that is activated in acidic environments and can be appended to mAbs without significant changes in optical properties. As a mAb conjugate, this agent shows high tumor specificity in a longitudinal imaging study in a murine model. To enable independent tracking of mAb uptake and lysosomal uptake and retention, a two-color ratiometric imaging strategy was employed using an "always-ON" heptamethine cyanine dye (λex = 785 nm) and the pH-responsive Benz-NorCy7 (λex = 890 nm). To assess proteolytic catabolism, we append a cleavable carbamate to Benz-NorCy7 to create turn-ON probes. These agents facilitate the comparison of two common peptide linkers and provide insights into their in vivo properties. Overall, these studies provide a strategy to assess the fate of protein-based therapeutics using optical imaging.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L Patel
- Small Animal Imaging Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
2
|
Li Y, Zhang C, Wu Q, Peng Y, Ding Y, Zhang Z, Xu X, Xie H. Enzyme-Activatable Near-Infrared Photosensitizer with High Enrichment in Tumor Cells Based on a Multi-Effect Design. Angew Chem Int Ed Engl 2024; 63:e202317773. [PMID: 38116827 DOI: 10.1002/anie.202317773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Enzyme-activatable near-infrared (NIR) fluorescent probes and photosensitizers (PSs) have emerged as promising tools for molecular imaging and photodynamic therapy (PDT). However, in living organisms selective retention or even enrichment of these reagents after enzymatic activation at or near sites of interest remains a challenging task. Herein, we integrate non-covalent and covalent retention approaches to introduce a novel "1-to-3" multi-effect strategy-one enzymatic stimulus leads to three types of effects-for the design of an enzyme-activatable NIR probe or PS. Using this strategy, we have constructed an alkaline phosphatase (ALP)-activatable NIR fluorogenic probe and a NIR PS, which proved to be selectively activated by ALP to switch on NIR fluorescence or photosensitizing ability, respectively. Additionally, these reagents showed significant enrichment (over 2000-fold) in ALP-overexpressed tumor cells compared to the culture medium, accompanied by massive depletion of intracellular thiols, the major antioxidants in cells. The investigation of this ALP-activatable NIR PS in an in vivo PDT model resulted in complete suppression of HeLa tumors and full recovery of all tested mice. Encouragingly, even a single administration of this NIR PS was sufficient to completely suppress tumors in mice, demonstrating the high potential of this strategy in biomedical applications.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai, 200237, China
| | - Chaoying Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Qingyi Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiru Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhengwei Zhang
- Department of nuclear medicine & PET center, Huashan Hospital, Fudan University, Shanghai, 200235, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai, 200237, China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Muhammad Usama S, Gao Z, Arancillo M, Burgess K. Cytotoxicities of Tumor-Seeking Dyes: Impact on Future Clinical Trials. ChemMedChem 2023; 18:e202200561. [PMID: 36630600 PMCID: PMC10010615 DOI: 10.1002/cmdc.202200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Heptamethine (Cy7) dyes with meso-Cl substituents injected intravenously (iv) into mice accumulate in tumors and persist there over several days. We believe this occurs via meso-Cl displacement by the only free cysteine residues of albumin; therefore, conjugating tumor-seeking dyes with fragments can increase selective therapeutic delivery to tumors and drug residence. This strategy has elevated significance recently because the first tumor-seeking dye-drug conjugate has moved into clinical trials. Options for further clinical research include modifying the dye, and use of preformed albumin adducts instead of dyes alone. Herein we show correlations of cytotoxicities, lipophilicities, organelle localization, apoptosis, cell-cycle arrest, wound healing/migration assays, and reactivities/affinities with human serum albumin are difficult to observe. However, our studies arrived at an important conclusion: preformed dye-drug-HSA adducts are less cytotoxic, and therefore preferable for subsequent clinical work, relative to direct injection of meso-Cl-containing forms.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Zhe Gao
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Maritess Arancillo
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| |
Collapse
|