1
|
Siddique A, Shaheen S, Iftikhar A, Faisal A, Rehman HM, Shah M, Tahir A, Rashid U. Bicyclic 2-aminopyrimidine derivatives as potent VEGFR-2 inhibitors and apoptosis Inducers: Structure-Guided design, synthesis, anticancer assessment, and in-silico exploration. Eur J Med Chem 2025; 293:117726. [PMID: 40378718 DOI: 10.1016/j.ejmech.2025.117726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
Anticancer therapy focuses on VEGFR-2 inhibition to disrupt angiogenesis, a critical process that sustains tumor growth and metastasis. This study outlines the synthesis and biological evaluation of 14 newly designed compounds featuring a bicyclic 2-amino-pyrimidine scaffold. In-vitro VEGFR-2 inhibition showed that compounds 55 and 61 were more potent with IC50 of 0.035 μM and 0.043 μM respectively, compared to the reference drug Sorafenib, and revealed selectivity for VEGFR-2 over EGFR. Consequently, 55 and 61 displayed good antiproliferative activities against the tested cell lines A549 (IC50 = 2.67 and 2.71 μM, respectively) and HCT116 (IC50 = 10.87 and 12.17 μM, respectively). The most active compounds were further assessed for their ability to induce apoptosis and preferential effect on wound closure in A549 cells, investigated via the cell scratch assay. Moreover, these compounds substantially reduced the phosphorylation of ERK and AKT, two downstream targets of VEGFR-2. The CAM assay further verified the antiangiogenic potential of lead compounds, revealing a significant reduction of neovascularization. Molecular docking studies performed for compound 55 showed hydrogen bond interactions with Asp1046, Cys919, and Glu885, similar to FDA-approved sorafenib. Moreover, a 100 ns MD simulation confirmed the complex's stability, while other analyses, such as RMSD, RMSF, PCA, and FEL, were performed to characterize protein conformational variations. Thorough SAR analysis, along with findings of cytotoxic activities and in-vitro inhibition of VEGFR-2, supports the potential of these synthetic compounds as VEGFR-2 inhibitors.
Collapse
Affiliation(s)
- Arshma Siddique
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Sadia Shaheen
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Ali Iftikhar
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore Cantt, 54792, Lahore, Pakistan
| | - Amir Faisal
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore Cantt, 54792, Lahore, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Ayesha Tahir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan.
| |
Collapse
|
2
|
Zhu CL, Yan X, Bin HY, Wu X, Huang ZY, Yan PC, Huang G, Xie JH, Zhou QL. Enantioselective Synthesis of Chiral 1,4-Dihydroquinolines via Iridium-Catalyzed Asymmetric Partial Hydrogenation of Quinolines. J Am Chem Soc 2025; 147:5725-5735. [PMID: 39909729 DOI: 10.1021/jacs.4c13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Chiral 1,4-dihydroquinolines are frequently found in natural products and pharmaceuticals, yet a generally useful route for their synthesis remains elusive. Here, we present an asymmetric partial hydrogenation strategy to access enantioenriched 1,4-dihydroquinolines from quinolines. Our strategy involves incorporating an ester group at position 3 of the quinoline ring, thereby enhancing the electronic deficiency and polarity of the C3-C4 double bond. Employing a chiral Ir-SpiroPAP catalyst facilitated the hydrogenation of a wide variety of 4-substituted 3-ethoxycarbonylquinolines, yielding chiral 1,4-dihydroquinolines in high yields (up to 95%) with exceptional enantioselectivity and efficiency (up to 99% ee and 1840 TONs). Noteworthy for its scalability and practicality, the method provides a robust avenue for the synthesis of valuable compounds such as 9-aryl aza-podophyllotoxins and melatonin MT2 receptor modulators. Density functional theory calculations were performed to gain insights into the reaction mechanism and the origins of the enantioselectivity.
Collapse
Affiliation(s)
- Chang-Liang Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Huai-Yu Bin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Zheng-Yan Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Pu-Cha Yan
- Zhejiang Jiuzhou Pharmaceutical CO., Ltd., Taizhou, Zhejiang 318000, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Arif MN, Sarwar S, Firdous F, Saleem RSZ, Nadeem H, Alamro AA, Alghamdi AA, Alshammari AH, Farooq O, Khan RA, Faisal A. Discovery and prospects of new heterocyclic Isatin-hydrazide derivative with a novel role as estrogen receptor α degrader in breast cancer cells. Front Chem 2024; 12:1424637. [PMID: 39021389 PMCID: PMC11252035 DOI: 10.3389/fchem.2024.1424637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction: Isatin, a heterocycle scaffold, is the backbone of many anticancer drugs and has previously been reported to engage multiple cellular targets and mechanisms, including angiogenesis, cell cycle, checkpoint pathways and multiple kinases. Here, we report that a novel isatin derivative, 5i, degrades estrogen receptor alpha (ERα) in estrogen-dependent breast cancer cells. This effect of the isatin nucleus has not been previously reported. Tamoxifen and fulvestrant represent standard therapy options in estrogen-mediated disease but have their own limitations. Isatin-based triple angiokinase inhibitor BIBF1120 (Nintedanib) and multikinase inhibitor Sunitinib (Sutent) have been approved by the FDA. Methods: Keeping this in view, we synthesized a series of N'-(1-benzyl-2-oxo-1, 2-dihydro-3H-indol-3-ylidene) hydrazide derivatives and evaluated them in vitro for antiproliferative activities in MCF-7 (ER+) cell line. We further investigated the effect of the most potent compound (5i) on the Erα through Western Blot Analysis. We used in silico pharmacokinetics prediction tools, particularly pkCSM tool, to assess the activity profiles of the compounds. Results and discussion: Compound 5i showed the best antiproliferative activity (IC50 value; 9.29 ± 0.97 µM) in these cells. Furthermore, 5i downregulated ERα protein levels in a dose-dependent manner in MCF-7. A multifaceted analysis of physicochemical properties through Data Warrior software revealed some prominent drug-like features of the synthesized compounds. The docking studies predicted the binding of ligands (compounds) with the target protein (ERα). Finally, molecular dynamics (MD) simulations indicated stable behavior of the protein-ligand complex between ERα and its ligand 5i. Overall, these results suggest that the new isatin derivative 5i holds promise as a new ERα degrader.
Collapse
Affiliation(s)
- Muhammad Nouman Arif
- Pharmaceutical Chemistry Research Lab, Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sadia Sarwar
- Cell Culture Laboratory, Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Farhat Firdous
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Defence Housing Authority, Lahore, Pakistan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Defence Housing Authority, Lahore, Pakistan
| | - Humaira Nadeem
- Pharmaceutical Chemistry Research Lab, Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amani Ahmad Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Omer Farooq
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Rashid Ali Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Amir Faisal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| |
Collapse
|
4
|
Iqbal S, Firdous F, Furqan M, Bilal A, Fozail S, Pohl SÖG, Doleschall NJ, Myant KB, Singh U, Emwas AH, Jaremko M, Faisal A, Saleem RSZ. Synthesis and characterization of bis-amide SSE1917 as a microtubule-stabilizing anticancer agent. Bioorg Chem 2024; 143:107094. [PMID: 38199139 DOI: 10.1016/j.bioorg.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.
Collapse
Affiliation(s)
- Sana Iqbal
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Farhat Firdous
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan; Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Muhammad Furqan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aishah Bilal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Salman Fozail
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Sebastian Öther-Gee Pohl
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Nora Julia Doleschall
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Kevin B Myant
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Upendra Singh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Amir Faisal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| |
Collapse
|
5
|
Wang H, Nie C, Luo M, Bai Q, Yao Z, Lv H, Chen B, Wang J, Xu W, Wang S, Chen X. Novel GSH-responsive prodrugs derived from indole-chalcone and camptothecin trigger apoptosis and autophagy in colon cancer. Bioorg Chem 2024; 143:107056. [PMID: 38183685 DOI: 10.1016/j.bioorg.2023.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Antineoplastic agents that target tubulin have shown efficacy as chemotherapeutic drugs, yet they are often constrained by multidrug resistance (MDR) and unwanted side effects. A multi-targeted strategy demonstrates great potency in reducing toxicity and enhancing efficacy and provides an alternative way for attenuating MDR. In this study, a series of dual-targeted anti-cancer agents based on indole-chalcone derivatives and the camptothecin (CPT) scaffold were synthesized. Among them, 14-1 demonstrated superior anti-proliferative activity than its precursor 13-1, CPT or their physical mixtures against tested cancer cells, including multidrug-resistant variants, while exhibited moderate cytotoxicity toward human normal cells. Mechanistic studies revealed that 14-1 acted as a glutathione-responsive prodrug, inducing apoptosis by substantially enhancing intracellular uptake of CPT, inhibiting tubulin polymerization, increasing the accumulation of intracellular reactive oxygen species, and initiating a mitochondrion-dependent apoptotic pathway. Moreover, 14-1 notably induced autophagy and suppressed topoisomerase I activity to further promote apoptosis. Importantly, 14-1 displayed potent inhibitory effect on tumor growth in paclitaxel (PTX)-resistant colorectal cancer (HCT-116/PTX) xenograft models without inducing obvious toxicity compared with CPT- or combo-treated group. These results suggest that 14-1 holds promise as a novel candidate for anti-cancer therapy, particularly in PTX-resistant cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Miao Luo
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Qiwen Bai
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Zhentao Yao
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Saiqi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China.
| |
Collapse
|