1
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024; 13:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
2
|
Okamura R, Kikuchi K, Taniguchi A, Nagai K, Seki R, Ohte S, Ohshiro T, Ando M, Tanaka T, Fukuda T. The new seriniquinone glycoside by biological transformation using the deep sea-derived bacterium Bacillus licheniformis KDM612. J Antibiot (Tokyo) 2024; 77:515-521. [PMID: 38773230 PMCID: PMC11284089 DOI: 10.1038/s41429-024-00729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Seriniquinone was isolated as a melanoma-selective anti-cancer agent from a culture broth of the marine-derived bacterium Serinicoccus marinus CNJ927 in 2014. It targets the unique small protein, dermcidin, which affects the drug resistance of cancer cells. Due to its significant activity against cancer cells, particularly melanoma, and its unique target, seriniquinone has been developed as a new pharmacophore. However, it has the disadvantage of poor solubility in drug discovery research, which needs to be resolved. A new seriniquinone glycoside (1) was synthesized by the biological transformation of seriniquinone using the deep sea-derived bacterium Bacillus licheniformis KDM612. Compound 1 exhibited selective anti-cancer activity against melanoma, similar to seriniquinone, and was 50-fold more soluble in DMSO than seriniquinone.
Collapse
Affiliation(s)
- Ryota Okamura
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Katsuki Kikuchi
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Akito Taniguchi
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Kenichiro Nagai
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Reiko Seki
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Satoshi Ohte
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Taichi Ohshiro
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masashi Ando
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Teruyoshi Tanaka
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Takashi Fukuda
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan.
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan.
| |
Collapse
|
3
|
Miguel RDA, Hirata AS, Salata GC, Apolinário AC, Barroso VM, Ishida K, La Clair JJ, Fenical W, Martins TS, Costa-Lotufo LV, Lopes LB. Topical delivery of seriniquinone for treatment of skin cancer and fungal infections is enabled by a liquid crystalline lamellar phase. Eur J Pharm Sci 2024; 192:106635. [PMID: 37952683 DOI: 10.1016/j.ejps.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Seriniquinone (SQ) was initially described by our group as an antimelanoma drug candidate and now also as an antifungal drug candidate. Despite its promising in vitro effects, SQ translation has been hindered by poor water-solubility. In this paper, we described the challenging nanoformulation process of SQ, which culminated in the selection of a phosphatidylcholine-based lamellar phase (PLP1). Liposomes and nanostructured lipid carriers were also evaluated but failed to encapsulate the compound. SQ-loaded PLP1 (PLP1-SQ) was characterized for the presence of sedimented or non-dissolved SQ, rheological and thermal behavior, and irritation potential with hen's egg test on the chorioallantoic membrane (HET-CAM). PLP1 influence on transepidermal water loss (TEWL) and skin penetration of SQ was assessed in a porcine ear skin model, while biological activity was evaluated against melanoma cell lines (SK-MEL-28 and SK-MEL-147) and C. albicans SC5314. Despite the presence of few particles of non-dissolved SQ (observed under the microscope 2 days after formulation obtainment), PLP1 tripled SQ retention in viable skin layers compared to SQ solution at 12 h. This effect did not seem to relate to formulation-induced changes on the barrier function, as no increases in TEWL were observed. No sign of vascular toxicity in the HET-CAM model was observed after cutaneous treatment with PLP1. SQ activity was maintained on melanoma cells after 48 h-treatment (IC50 values of 0.59-0.98 µM) whereas the minimum inhibitory concentration (MIC) against C. albicans after 24 h-treatment was 32-fold higher. These results suggest that a safe formulation for SQ topical administration was developed, enabling further in vivo studies.
Collapse
Affiliation(s)
- Rodrigo Dos A Miguel
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda S Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Giovanna C Salata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexsandra C Apolinário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vinicius M Barroso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, United States
| | - Tereza S Martins
- Department of Chemistry, Federal University of Sao Paulo, Diadema, SP, Brazil
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Haji N, Faizi M, Koutentis PA, Carty MP, Aldabbagh F. Heterocyclic Iminoquinones and Quinones from the National Cancer Institute (NCI, USA) COMPARE Analysis. Molecules 2023; 28:5202. [PMID: 37446864 DOI: 10.3390/molecules28135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and synthetic analogues are revealed as potential NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates, through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoquinone (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a major influence on the amount of the active compound with benzo[e]perimidines, phenoxazinones, benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and furano[2,3-b]naphthoquinones, hypothesised as prodrugs. Compounds with very strong correlations to known TrxR inhibitors had inverse correlations to the expression of both reductase enzymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and lavendamycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, e.g., parthenolides, while oxidising moieties are essential for correlations to NQO1, as with the mitosenes. Herein, an overview of synthetic methods and biological activity of each family of heterocyclic imino(quinone) is provided.
Collapse
Affiliation(s)
- Naemah Haji
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Masoma Faizi
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | | | - Michael P Carty
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
5
|
Nagao H, Ninomiya M, Sugiyama H, Itabashi A, Uno K, Tanaka K, Koketsu M. Comparative analysis of p-terphenylquinone and seriniquinone derivatives as reactive oxygen species-modulating agents. Bioorg Med Chem Lett 2022; 76:128992. [PMID: 36126897 DOI: 10.1016/j.bmcl.2022.128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Quinones are widespread in plants, animals, insects, and microorganisms. Several anticancer agents contain quinone structures as critical parts to show remarkable potential and distinctive modes of actions. The purpose of this study was to investigate the structure-activity relationships of microbial quinones and their derivatives as anticancer agents. A series of p-terphenylquinone and seriniquinone derivatives were therefore prepared. Treatment of the synthesized quinones possessed antiproliferative activity on human leukemia HL-60 cells in a dose-dependent fashion. In addition, seriniquinone derivatives elevated cellular reactive oxygen species (ROS) levels, thereby triggering the ensuing apoptotic events. Our findings emphasize the excellent potential of seriniquinone derivatives as redox cycling-induced ROS-modulating anticancer agents.
Collapse
Affiliation(s)
- Haruna Nagao
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hodaka Sugiyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Atsuya Itabashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kaho Uno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kaori Tanaka
- Division of Anaerobe Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
6
|
Hirata AS, La Clair JJ, Jimenez PC, Costa-Lotufo LV, Fenical W. Preclinical Development of Seriniquinones as Selective Dermcidin Modulators for the Treatment of Melanoma. Mar Drugs 2022; 20:md20050301. [PMID: 35621952 PMCID: PMC9143531 DOI: 10.3390/md20050301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
The bioactive natural product seriniquinone was discovered as a potential melanoma drug, which was produced by the as-yet-undescribed marine bacterium of the rare genus Serinicoccus. As part of a long-term research program aimed at the discovery of new agents for the treatment of cancer, seriniquinone revealed remarkable in vitro activity against a diversity of cancer cell lines in the US National Cancer Institute 60-cell line screening. Target deconvolution studies defined the seriniquinones as a new class of melanoma-selective agents that act in part by targeting dermcidin (DCD). The targeted DCD peptide has been recently examined and defined as a “pro-survival peptide” in cancer cells. While DCD was first isolated from human skin and thought to be only an antimicrobial peptide, currently DCD has been also identified as a peptide associated with the survival of cancer cells, through what is believed to be a disulfide-based conjugation with proteins that would normally induce apoptosis. However, the significantly enhanced potency of seriniquinone was of particular interest against the melanoma cell lines assessed in the NCI 60-cell line panel. This observed selectivity provided a driving force that resulted in a multidimensional program for the discovery of a usable drug with a new anticancer target and, therefore, a novel mode of action. Here, we provided an overview of the discovery and development efforts to date.
Collapse
Affiliation(s)
- Amanda S. Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| | - Paula C. Jimenez
- Institute of Marine Science, Federal University of São Paulo, Santos 11070-100, Brazil;
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0204, USA
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| |
Collapse
|
7
|
Hirata AS, Rezende-Teixeira P, Machado-Neto JA, Jimenez PC, Clair JJL, Fenical W, Costa-Lotufo LV. Seriniquinones as Therapeutic Leads for Treatment of BRAF and NRAS Mutant Melanomas. Molecules 2021; 26:7362. [PMID: 34885944 PMCID: PMC8658889 DOI: 10.3390/molecules26237362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Isolated from the marine bacteria Serinicoccus sp., seriniquinone (SQ1) has been characterized by its selective activity in melanoma cell lines marked by its modulation of human dermcidin and induction of autophagy and apoptosis. While an active lead, the lack of solubility of SQ1 in both organic and aqueous media has complicated its preclinical evaluation. In response, our team turned its effort to explore analogues with the goal of returning synthetically accessible materials with comparable selectivity and activity. The analogue SQ2 showed improved solubility and reached a 30-40-fold greater selectivity for melanoma cells. Here, we report a detailed comparison of the activity of SQ1 and SQ2 in SK-MEL-28 and SK-MEL-147 cell lines, carrying the top melanoma-associated mutations, BRAFV600E and NRASQ61R, respectively. These studies provide a definitive report on the activity, viability, clonogenicity, dermcidin expression, autophagy, and apoptosis induction following exposure to SQ1 or SQ2. Overall, these studies showed that SQ1 and SQ2 demonstrated comparable activity and modulation of dermcidin expression. These studies are further supported through the evaluation of a panel of basal expression of key-genes related to autophagy and apoptosis, providing further insight into the role of these mutations. To explore this rather as a survival or death mechanism, autophagy inhibition sensibilized BRAF mutants to SQ1 and SQ2, whereas the opposite happened to NRAS mutants. These data suggest that the seriniquinones remain active, independently of the melanoma mutation, and suggest the future combination of their application with inhibitors of autophagy to treat BRAF-mutated tumors.
Collapse
Affiliation(s)
- Amanda S. Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - Paula C. Jimenez
- Institute of Marine Science, Federal University of São Paulo, Santos 11070-100, SP, Brazil;
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093-0358, USA;
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093-0204, USA;
| | - Leticia V. Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| |
Collapse
|
8
|
New dihydronaphthothiophene derivatives by the biological transformation of seriniquinone using marine-derived actinomycete Streptomyces albogriseolus OM27-12. J Antibiot (Tokyo) 2021; 75:9-15. [PMID: 34840331 DOI: 10.1038/s41429-021-00484-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Seriniquinone was originally isolated as a melanoma-selective anti-cancer agent from a culture broth of marine bacteria. Pharmacological studies on its selectivity and unique target are ongoing. A new dihydronaphthothiophene (1) was synthesized by the biological transformation of seriniquinone using marine-derived actinomycete Streptomyces albogriseolus OM27-12, and its derivatives (2-4) were chemically synthesized. Compounds 1-4 exhibited selective cytotoxic activity against melanoma and improved solubility.
Collapse
|
9
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
10
|
Nair V, Kim MC, Golen JA, Rheingold AL, Castro GA, Jensen PR, Fenical W. Verrucosamide, a Cytotoxic 1,4-Thiazepane-Containing Thiodepsipeptide from a Marine-Derived Actinomycete. Mar Drugs 2020; 18:md18110549. [PMID: 33167356 PMCID: PMC7694325 DOI: 10.3390/md18110549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
A new cytotoxic thiodepsipeptide, verrucosamide (1), was isolated along with the known, related cyclic peptide thiocoraline, from the extract of a marine-derived actinomycete, a Verrucosispora sp., our strain CNX-026. The new peptide, which is composed of two rare seven-membered 1,4-thiazepane rings, was elucidated by a combination of spectral methods and the absolute configuration was determined by a single X-ray diffraction study. Verrucosamide (1) showed moderate cytotoxicity and selectivity in the NCI 60 cell line bioassay. The most susceptible cell lines were MDA-MB-468 breast carcinoma with an LD50 of 1.26 µM, and COLO 205 colon adenocarcinoma with an LD50 of 1.4 µM. Also isolated along with verrucosamide were three small 3-hydroxy(alkoxy)-quinaldic acid derivatives that appear to be products of the same biosynthetic pathway.
Collapse
Affiliation(s)
- Vimal Nair
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0204, USA; (V.N.); (M.C.K.); (G.A.C.); (P.R.J.)
| | - Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0204, USA; (V.N.); (M.C.K.); (G.A.C.); (P.R.J.)
| | - James A. Golen
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA; (J.A.G.); (A.L.R.)
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA; (J.A.G.); (A.L.R.)
| | - Gabriel A. Castro
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0204, USA; (V.N.); (M.C.K.); (G.A.C.); (P.R.J.)
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0204, USA; (V.N.); (M.C.K.); (G.A.C.); (P.R.J.)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0204, USA; (V.N.); (M.C.K.); (G.A.C.); (P.R.J.)
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, CA 92093, USA
- Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA
- Correspondence: ; Tel.: +1-858-534-2133
| |
Collapse
|
11
|
Apolinário AC, Hirata AS, Anjos Miguel RD, Costa-Lotufo LV, Pessoa A, La Clair JJ, Fenical W, Lopes LB. Exploring the benefits of nanotechnology for cancer drugs in different stages of the drug development pipeline. Nanomedicine (Lond) 2020; 15:2539-2542. [PMID: 32945726 DOI: 10.2217/nnm-2020-0290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Amanda Soares Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Dos Anjos Miguel
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Department of Biochemical & Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - James J La Clair
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Luciana Biagini Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agro-ressources (LG2A), CNRS FRE 3517, 33 rue Saint-Leu, 80039 Amiens, France
| | - Maris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1007, Latvia
| | - Maria Kolympadi Markovic
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Gabriela Ambrožić
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
13
|
Williams DE, Andersen RJ. Biologically active marine natural products and their molecular targets discovered using a chemical genetics approach. Nat Prod Rep 2020; 37:617-633. [PMID: 31750842 PMCID: PMC7874888 DOI: 10.1039/c9np00054b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Covering: 2000 to 2019The discovery of new natural products that have some combination of unprecedented chemical structures, biological activities of therapeutic interest for urgent medical needs, and new molecular targets provides the fuel that sustains the vitality of natural products chemistry research. Unfortunately, finding these important new compounds is neither routine or trivial and a major challenge is finding effective discovery paradigms. This review presents examples that illustrate the effectiveness of a chemical genetics approach to marine natural product (MNP) discovery that intertwines compound discovery, molecular target identification, and phenotypic response/biological activity. The examples include MNPs that have complex unprecedented structures, new or understudied molecular targets, and potent biological activities of therapeutic interest. A variety of methods to identify molecular targets are also featured.
Collapse
Affiliation(s)
- David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| | | |
Collapse
|
14
|
Loureiro DRP, Magalhães ÁF, Soares JX, Pinto J, Azevedo CMG, Vieira S, Henriques A, Ferreira H, Neves N, Bousbaa H, Reis S, Afonso CMM, Pinto MMM. Yicathins B and C and Analogues: Total Synthesis, Lipophilicity and Biological Activities. ChemMedChem 2020; 15:749-755. [PMID: 32162478 DOI: 10.1002/cmdc.201900735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Natural products have always been an important source of new hits and leads in drug discovery, with the marine environment being regarded as a significant source of novel and exquisite bioactive compounds. Yicathins B and C are two marine-derived xanthones that have shown antibacterial and antifungal activity. Herein, the total synthesis of these yicathins and six novel analogues is reported for the first time. As marine natural products tend to have very lipophilic scaffolds, the lipophilicity of yicathins and their analogues was evaluated in the classical octanol/water system and a biomimetic model-based system. As the xanthonic nucleus is a "privileged structure", other biological activities were evaluated, namely antitumor and anti-inflammatory activities. An interesting anti-inflammatory activity was identified for yicathin analogues that paves the way for the design of dual activity (anti-infective and anti-inflammatory) marine-inspired xanthone derivatives.
Collapse
Affiliation(s)
- Daniela R P Loureiro
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos Porto, Portugal
| | - Álvaro F Magalhães
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - José X Soares
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Pinto
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Carlos M G Azevedo
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara Vieira
- I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Parque de Ciência e Tecnologia - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Henriques
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Helena Ferreira
- I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Parque de Ciência e Tecnologia - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Neves
- I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Parque de Ciência e Tecnologia - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Carlos M M Afonso
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos Porto, Portugal
| | - Madalena M M Pinto
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos Porto, Portugal
| |
Collapse
|
15
|
Moreira da Silva R, Carrão DB, Habenschus MD, Jimenez PC, Lopes NP, Fenical W, Costa-Lotufo LV, de Oliveira ARM. Prediction of seriniquinone-drug interactions by in vitro inhibition of human cytochrome P450 enzymes. Toxicol In Vitro 2020; 65:104820. [PMID: 32142840 DOI: 10.1016/j.tiv.2020.104820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Seriniquinone is a secondary metabolite isolated from a rare marine bacterium of the genus Serinicoccus. This natural quinone is highlighted for its selective cytotoxic activity toward melanoma cancer cells, in which rapid metastatic properties are still a challenge for clinical treatment of malignant melanoma. The progress of seriniquinone as a promising bioactive molecule for drug development requires the assessment of its clinical interaction potential with other drugs. This study aimed to investigate the in vitro inhibitory effects of seriniquinone on the main human CYP450 isoforms involved in drug metabolism. The results showed strong inhibition of CYP1A2, CYP2E1 and CYP3A, with IC50 values up to 1.4 μM, and moderate inhibition of CYP2C19, with IC50 value >15 μM. Detailed experiments performed with human liver microsomes showed that the inhibition of CYP450 isoforms can be explained by competitive and non-competitive inhibition mechanisms. In addition, seriniquinone demonstrated to be an irreversible and time-dependent inhibitor of CYP1A2 and CYP3A. The low inhibition constants values obtained experimentally suggest that concomitant intake of seriniquinone with drug metabolized by these isoforms should be carefully monitored for adverse effects or therapeutic failure.
Collapse
Affiliation(s)
- Rodrigo Moreira da Silva
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903 Ribeirão Preto, SP, Brazil.
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Paula Christine Jimenez
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, 11070-100 Santos, SP, Brazil
| | - Norberto Peporine Lopes
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903 Ribeirão Preto, SP, Brazil
| | - William Fenical
- CMBB, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Drive No. 0204, 92093-0204 La Jolla, CA, USA
| | - Letícia Vera Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil
| |
Collapse
|