1
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Kaur T, Shao X, Horikawa M, Sharninghausen LS, Preshlock S, Brooks AF, Henderson BD, Koeppe RA, DaSilva AF, Sanford MS, Scott PJH. Strategies for the Production of [ 11C]LY2795050 for Clinical Use. Org Process Res Dev 2023; 27:373-381. [PMID: 36874204 PMCID: PMC9983641 DOI: 10.1021/acs.oprd.2c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
This report describes a comparison of four different routes for the clinical-scale radiosynthesis of the κ-opioid receptor antagonist [11C]LY2795050. Palladium-mediated radiocyanation and radiocarbonylation of an aryl iodide precursor as well as copper-mediated radiocyanation of an aryl iodide and an aryl boronate ester have been investigated. Full automation of all four methods is reported, each of which provides [11C]LY2795050 in sufficient radiochemical yield, molar activity, and radiochemical purity for clinical use. The advantages and disadvantages of each radiosynthesis method are compared and contrasted.
Collapse
Affiliation(s)
- Tanpreet Kaur
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Xia Shao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Liam S. Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Sean Preshlock
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Allen F. Brooks
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Bradford D. Henderson
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Robert A. Koeppe
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Alexandre F. DaSilva
- Headache Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Peter J. H. Scott
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Wu X, Chen W, Holmberg-Douglas N, Bida GT, Tu X, Ma X, Wu Z, Nicewicz DA, Li Z. 11C, 12C and 13C-Cyanation of Electron-Rich Arenes via Organic Photoredox Catalysis. Chem 2023; 9:343-362. [PMID: 36777049 PMCID: PMC9913897 DOI: 10.1016/j.chempr.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As a non-invasive imaging technology, positron emission tomography (PET) plays a crucial role in personalized medicine, including early diagnosis, patient screening, and treatment monitoring. The advancement of PET research depends on the discovery of new PET agents, which requires the development of simple and efficient radiolabeling methods in many cases. As bioisosteres for halogen and carbonyl moieties, nitriles are important functional groups in pharmaceutical and agrochemical compounds. Here, we disclose a mild organophotoredox-catalyzed method for efficient cyanation of a broad spectrum of electron-rich arenes, including abundant and readily available veratroles and pyrogallol trimethyl ethers. Notably, the transformations not only are compatible with various affordable 12C and 13C-cyanide sources, but also could be applied to carbon-11 synthons to incorporate [11C]nitriles into arenes. The aryl [11C]nitriles can be further derivatized to [11C]carboxylic acids, [11C]amides, and [11C]alkyl amines. The newly developed reaction can serve as a powerful tool for generating new PET agents.
Collapse
Affiliation(s)
- Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, United States
| | - Gerald Thomas Bida
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Xianshuang Tu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Xinrui Ma
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - David A. Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
5
|
Fillesoye F, Ibazizène M, Marie N, Noble F, Perrio C. Evaluation of Specific Binding of [ 11C]RTI-97 to Kappa Opioid Receptor by Autoradiography and PET Imaging in Rat. ACS Med Chem Lett 2021; 12:1739-1744. [PMID: 34795862 DOI: 10.1021/acsmedchemlett.1c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022] Open
Abstract
Kappa opioid receptor (KOR) PET imaging remains attractive to understand the role of KOR in health and diseases and to help the development of drugs especially for psychiatric disorders such as depression, anxiety, and addiction. The potent and selective KOR antagonist RTI-97 labeled with carbon-11 was previously demonstrated to display specific KOR binding in mouse brain by ex vivo autoradiography studies. Herein, we evaluated [11C]RTI-97 in rat by in vitro autoradiography and by in vivo PET imaging. The radiosynthesis of [11C]RTI-97 was optimized to obtain high molar activities. Despite a low cerebral uptake, the overall results showed a heterogeneous repartition and specific KOR binding of [11C]RTI-97 in brain and a high and specific accumulation of [11C]RTI-97 in pituitary in accordance with KOR expression.
Collapse
Affiliation(s)
- Fabien Fillesoye
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| | - Méziane Ibazizène
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| | - Nicolas Marie
- Université de Paris, CNRS, ERL 3649, Inserm, UMR-S 1124, Pharmacologie et thérapies des addictions, 75006 Paris, France
| | - Florence Noble
- Université de Paris, CNRS, ERL 3649, Inserm, UMR-S 1124, Pharmacologie et thérapies des addictions, 75006 Paris, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| |
Collapse
|
6
|
Zhou YP, Makaravage KJ, Brugarolas P. Radiolabeling with [ 11C]HCN for Positron emission tomography. Nucl Med Biol 2021; 102-103:56-86. [PMID: 34624831 PMCID: PMC8978408 DOI: 10.1016/j.nucmedbio.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Hydrogen cyanide (HCN) is a versatile synthon for generating carbon‑carbon and carbon-heteroatom bonds. Unlike other one-carbon synthons (i.e., CO, CO2), HCN can function as a nucleophile (as in potassium cyanide, KCN) and an electrophile (as in cyanogen bromide, (CN)Br). The incorporation of the CN motif into organic molecules generates nitriles, hydantoins and (thio)cyanates, which can be converted to carboxylic acids, aldehydes, amides and amines. Such versatile chemistry is particularly attractive in PET radiochemistry where diverse bioactive small molecules incorporating carbon-11 in different positions need to be produced. The first examples of making [11C]HCN for radiolabeling date back to the 1960s. During the ensuing decades, [11C]cyanide labeling was popular for producing biologically important molecules including 11C-labeled α-amino acids, sugars and neurotransmitters. [11C]cyanation is now reemerging in many PET centers due to its versatility for making novel tracers. Here, we summarize the chemistry of [11C]HCN, review the methods to make [11C]HCN past and present, describe methods for labeling different types of molecules with [11C]HCN, and provide an overview of the reactions available to convert nitriles into other functional groups. Finally, we discuss some of the challenges and opportunities in [11C]HCN labeling such as developing more robust methods to produce [11C]HCN and developing rapid and selective methods to convert nitriles into other functional groups in complex molecules.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katarina J Makaravage
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
7
|
Ferrat M, Dahl K, Schou M. One-Pot Synthesis of 11 C-Labelled Primary Benzamides via Intermediate [ 11 C]Aroyl Dimethylaminopyridinium Salts. Chemistry 2021; 27:8689-8693. [PMID: 33885193 PMCID: PMC8251633 DOI: 10.1002/chem.202100544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 11/08/2022]
Abstract
Electrophilic 11C‐labelled aroyl dimethylaminopyridinium salts, obtained by carbonylative cross‐coupling of aryl halides with [11C]carbon monoxide, were prepared for the first time and shown to be valuable intermediates in the synthesis of primary [11C]benzamides. The methodology furnished a set of benzamide model compounds, including the two poly (ADP‐ribose) polymerase (PARP) inhibitors niraparib and veliparib, in moderate to excellent radiochemical yields. In addition to providing a convenient and practical route to primary [11C]benzamides, the current method paves the way for future application of [11C]aroyl dimethylaminopyridinium halide salts in positron emission tomography (PET) tracer synthesis.
Collapse
Affiliation(s)
- Mélodie Ferrat
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska, Institutet and Stockholm County Council, 171 76, Stockholm, Sweden
| | - Kenneth Dahl
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska, Institutet and Stockholm County Council, 171 76, Stockholm, Sweden.,AstraZeneca PET Science Centre, Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden
| |
Collapse
|
8
|
Kaur T, Brooks AF, Hockley BG, Torres J, Henderson BD, Scott PJH, Shao X. An updated synthesis of N 1 '-([ 11 C]methyl)naltrindole for positron emission tomography imaging of the delta opioid receptor. J Labelled Comp Radiopharm 2020; 64:187-193. [PMID: 33274468 DOI: 10.1002/jlcr.3898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Abstract
A new method for the synthesis of the highly selective delta opioid receptor (DOR) antagonist radiotracer N1 '-([11 C]methyl)naltrindole ([11 C]MeNTI) is described. The original synthesis required hydrogenation of a benzyl protecting group after 11 C-labeling, which is challenging in modern radiochemistry laboratories that tend to be heavily automated and operate according to current good manufacturing practice. To address this challenge, we describe development of a novel MeNTI precursor bearing a methoxymethyl acetal (MOM) protecting group, which is easily removed with HCl, and employ it in an updated synthesis of [11 C]MeNTI. The new synthesis is fully automated and validated for clinical use. The total synthesis time is 45 min and provides [11 C]MeNTI in good activity yield (49 ± 8 mCi), molar activity (3,926 ± 326 Ci/mmol) and radiochemical purity (97% ± 2%).
Collapse
Affiliation(s)
- Tanpreet Kaur
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian G Hockley
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jovany Torres
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bradford D Henderson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Jackson IM, Lee SJ, Sowa AR, Rodnick ME, Bruton L, Clark M, Preshlock S, Rothley J, Rogers VE, Botti LE, Henderson BD, Hockley BG, Torres J, Raffel DM, Brooks AF, Frey KA, Kilbourn MR, Koeppe RA, Shao X, Scott PJH. Use of 55 PET radiotracers under approval of a Radioactive Drug Research Committee (RDRC). EJNMMI Radiopharm Chem 2020; 5:24. [PMID: 33175263 PMCID: PMC7658275 DOI: 10.1186/s41181-020-00110-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In the US, EU and elsewhere, basic clinical research studies with positron emission tomography (PET) radiotracers that are generally recognized as safe and effective (GRASE) can often be conducted under institutional approval. For example, in the United States, such research is conducted under the oversight of a Radioactive Drug Research Committee (RDRC) as long as certain requirements are met. Firstly, the research must be for basic science and cannot be intended for immediate therapeutic or diagnostic purposes, or to determine the safety and effectiveness of the PET radiotracer. Secondly, the PET radiotracer must be generally recognized as safe and effective. Specifically, the mass dose to be administered must not cause any clinically detectable pharmacological effect in humans, and the radiation dose to be administered must be the smallest dose practical to perform the study and not exceed regulatory dose limits within a 1-year period. In our experience, the main barrier to using a PET radiotracer under RDRC approval is accessing the required information about mass and radioactive dosing. RESULTS The University of Michigan (UM) has a long history of using PET radiotracers in clinical research studies. Herein we provide dosing information for 55 radiotracers that will enable other PET Centers to use them under the approval of their own RDRC committees. CONCLUSIONS The data provided herein will streamline future RDRC approval, and facilitate further basic science investigation of 55 PET radiotracers that target functionally relevant biomarkers in high impact disease states.
Collapse
Affiliation(s)
- Isaac M Jackson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
- Present Address: Stanford University, Stanford, CA, USA
| | - So Jeong Lee
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
- Present Address: Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra R Sowa
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Melissa E Rodnick
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Laura Bruton
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Mara Clark
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Jill Rothley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Virginia E Rogers
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Leslie E Botti
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Bradford D Henderson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Brian G Hockley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Jovany Torres
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - David M Raffel
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Michael R Kilbourn
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Xia Shao
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Wright JS, Kaur T, Preshlock S, Tanzey SS, Winton WP, Sharninghausen LS, Wiesner N, Brooks AF, Sanford MS, Scott PJH. Copper-Mediated Late-stage Radiofluorination: Five Years of Impact on Pre-clinical and Clinical PET Imaging. Clin Transl Imaging 2020; 8:167-206. [PMID: 33748018 PMCID: PMC7968072 DOI: 10.1007/s40336-020-00368-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Copper-mediated radiofluorination (CMRF) is emerging as the method of choice for the formation of aromatic C-18F bonds. This minireview examines proof-of-concept, pre-clinical, and in-human imaging studies of new and established imaging agents containing aromatic C-18F bonds synthesized with CMRF. An exhaustive discussion of CMRF methods is not provided, although key developments that have enabled or improved upon the syntheses of fluorine-18 imaging agents are discussed. METHODS A comprehensive literature search from April 2014 onwards of the Web of Science and PubMed library databases was performed to find reports that utilize CMRF for the synthesis of fluorine-18 radiopharmaceuticals, and these represent the primary body of research discussed in this minireview. Select conference proceedings, previous reports describing alternative methods for the synthesis of imaging agents, and preceding fluorine-19 methodologies have also been included for discussion. CONCLUSIONS CMRF has significantly expanded the chemical space that is accessible to fluorine-18 radiolabeling with production methods that can meet the regulatory requirements for use in Nuclear Medicine. Furthermore, it has enabled novel and improved syntheses of radiopharmaceuticals and facilitated subsequent PET imaging studies. The rapid adoption of CMRF will undoubtedly continue to simplify the production of imaging agents and inspire the development of new radiofluorination methodologies.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean S Tanzey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wade P Winton
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Wiesner
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Tanzey SS, Shao X, Stauff J, Arteaga J, Sherman P, Scott PJH, Mossine AV. Synthesis and Initial In Vivo Evaluation of [ 11C]AZ683-A Novel PET Radiotracer for Colony Stimulating Factor 1 Receptor (CSF1R). Pharmaceuticals (Basel) 2018; 11:E136. [PMID: 30551596 PMCID: PMC6316681 DOI: 10.3390/ph11040136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) imaging of Colony Stimulating Factor 1 Receptor (CSF1R) is a new strategy for quantifying both neuroinflammation and inflammation in the periphery since CSF1R is expressed on microglia and macrophages. AZ683 has high affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM) and >250-fold selectivity over 95 other kinases. In this paper, we report the radiosynthesis of [11C]AZ683 and initial evaluation of its use in CSF1R PET. [11C]AZ683 was synthesized by 11C-methylation of the desmethyl precursor with [11C]MeOTf in 3.0% non-corrected activity yield (based upon [11C]MeOTf), >99% radiochemical purity and high molar activity. Preliminary PET imaging with [11C]AZ683 revealed low brain uptake in rodents and nonhuman primates, suggesting that imaging neuroinflammation could be challenging but that the radiopharmaceutical could still be useful for peripheral imaging of inflammation.
Collapse
Affiliation(s)
- Sean S Tanzey
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Janna Arteaga
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Phillip Sherman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Peter J H Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Andrew V Mossine
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|