1
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
2
|
Khandebharad AU, Kulkarni PS, Ubale PS, Dhotre BK, Kute PR, Sarda SR. Synergism of Ultrasound and Choline Hydroxide for the Synthesis of the Azlactone Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2072913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | | | - Bharat K. Dhotre
- Department of Chemistry, Swami Vivekanand College, Jalna, Maharashtra, India
| | - Prabhakar R. Kute
- Department of Chemistry, Pratishatn College, Aurangabad, Maharashtra, India
| | | |
Collapse
|
3
|
Apostol TV, Chifiriuc MC, Draghici C, Socea LI, Marutescu LG, Olaru OT, Nitulescu GM, Pahontu EM, Saramet G, Barbuceanu SF. Synthesis, In Silico and In Vitro Evaluation of Antimicrobial and Toxicity Features of New 4-[(4-Chlorophenyl)sulfonyl]benzoic Acid Derivatives. Molecules 2021; 26:molecules26165107. [PMID: 34443693 PMCID: PMC8399259 DOI: 10.3390/molecules26165107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The multi-step synthesis, physico-chemical characterization, and biological activity of novel valine-derived compounds, i.e., N-acyl-α-amino acids, 1,3-oxazol-5(4H)-ones, N-acyl-α-amino ketones, and 1,3-oxazoles derivatives, bearing a 4-[(4-chlorophenyl)sulfonyl]phenyl moiety are reported here. The structures of the newly synthesized compounds were confirmed by spectral (UV-Vis, FT-IR, MS, 1H- and 13C-NMR) data and elemental analysis results, and their purity was determined by RP-HPLC. The new compounds were assessed for their antimicrobial activity and toxicity to aquatic crustacean Daphnia magna. Also, in silico studies regarding their potential mechanism of action and toxicity were performed. The antimicrobial evaluation revealed that the 2-{4-[(4-chlorophenyl)sulfonyl]benzamido}-3-methylbutanoic acid and the corresponding 1,3-oxazol-5(4H)-one exhibited antimicrobial activity against Gram-positive bacterial strains and the new 1,3-oxazole containing a phenyl group at 5-position against the C. albicans strain.
Collapse
Affiliation(s)
- Theodora-Venera Apostol
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Mariana Carmen Chifiriuc
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania;
| | - Constantin Draghici
- “Costin D. Nenițescu” Centre of Organic Chemistry, Romanian Academy, 202 B Splaiul Independenței, 060023 Bucharest, Romania;
| | - Laura-Ileana Socea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Luminita Gabriela Marutescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania;
- Correspondence: (L.G.M.); (O.T.O.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
- Correspondence: (L.G.M.); (O.T.O.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Elena Mihaela Pahontu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Gabriel Saramet
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Stefania-Felicia Barbuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| |
Collapse
|
4
|
Ma H, Liu S, Zhu L, Ma C, Han X, He C, Zhao B. Vibrational spectroscopy and DFT analysis of 4-cyanophenylhydrazine: A potential SERS probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119574. [PMID: 33640624 DOI: 10.1016/j.saa.2021.119574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
4-Cyanophenylhydrazine (4-CPH) is an organic synthesis intermediate. To date, several products derived from 4-CPH have been well studied; however, 4-CPH itself has not been extensively investigated. Herein, we performed vibrational and theoretical analyses of 4-CPH. Density functional theory (DFT) calculations were applied to predict the IR and Raman spectra of 4-CPH, which were compared with the experimental spectra. The calculated and experimental spectral results were in good agreement, except for an abnormal transformation of the protonated 4-CPH cyano group (C≡N), which was observed in the theoretical IR spectrum. Several wavefunction analyses revealed that this transformation was due to the protonation-induced depolarization of the molecule. Moreover, we verified the applicability of 4-CPH as a probe for surface-enhanced Raman spectroscopy (SERS). We observed a pH-dependent shift in the cyano bond frequency within the silent region and determined, as a novel discovery, that this shift was induced by 4-CPH protonation. Our results provide considerable, fundamental information that confirms the potential of 4-CPH as a SERS probe.
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Songlin Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Lin Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Chao Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
5
|
Pseudo-Dipeptide Bearing α,α-Difluoromethyl Ketone Moiety as Electrophilic Warhead with Activity against Coronaviruses. Int J Mol Sci 2021; 22:ijms22031398. [PMID: 33573283 PMCID: PMC7866854 DOI: 10.3390/ijms22031398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.
Collapse
|
6
|
Ayoob MM, Hussein AJ, Samad MK, Dege N, Hawaiz FE, Mohamed SK, Hussain FHS. Synthesis, Anti-Bacterial and Anti-Oxidant Activity of Azo-Oxazolone and Their Ring Opening Azo-Benzamide Derivatives. Curr Org Synth 2020; 18:493-505. [PMID: 33342416 DOI: 10.2174/1570179417666201218163435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
This article describes the controlled synthesis and characterization of azo oxazolone scaffold compounds containing multifunctional groups such as carbonyl group, imine and carbon-carbon double bond. The reaction of the azo-oxazolone with aromatic amines led to the ring-opening of the azo-oxazolone into the corresponding azo-benzamide derivatives in a short time (average 10 min), resulting in high yield (>90%). All newly synthesized compounds were characterized by the common spectral analysis such as UV, IR, 1H-NMR, 13CNMR, Elemental analysis and MS spectrometry. OBJECTIVE The aim of the study was to synthesize new bioactive azo-benzamides by using azo-oxazolone as a synthon utilizing its ring-opening function. MATERIALS AND METHODS Azo-benzamide derivatives were prepared in very good yield via ring-opening reaction of azo-oxazolone with aromatic amines in the presence of acetic acid under reflux for few minutes. RESULTS AND DISCUSSION Chemical structures of the newly synthesized compounds were characterized by UV, IR, 1H-NMR, 13C-NMR, Elemental analysis and MS spectrometry. CONCLUSION The new azo-oxazolone 4 and azo-benzamide compounds 5a, 5c, 5f, 5h, 5j were screened against Escherichia coli as G(-ve) and Staphylococcus aureus as G(+ve) using ciprofloxacin as a standard. All compounds showed high inhibition potency against E-Coli but low inhibition for S-aureus. Compounds 4, 5c, and 5J showed more reactivity against E-coli. Others: Also, the compounds were tested for their anti-oxidant activity by both DPPH and FRAP methods. The results showed that some compounds possessed moderate anti-oxidant activity in comparison to ascorbic acid as control, typically the compounds bearing OCH3 and OCH2CH3 groups.
Collapse
Affiliation(s)
- Mzgin M Ayoob
- Department of Chemistry, College of Education, Salahaddin University- Erbil, Erbil-Kurdistan, Iraq
| | - Awaz J Hussein
- Department of Chemistry, College of Education, Salahaddin University- Erbil, Erbil-Kurdistan, Iraq
| | - Mohammed K Samad
- Department of Chemistry, College of Education, Salahaddin University- Erbil, Erbil-Kurdistan, Iraq
| | - Necmi Dege
- Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey
| | - Farouq E Hawaiz
- Department of Chemistry, College of Education, Salahaddin University- Erbil, Erbil-Kurdistan, Iraq
| | - Shaaban K Mohamed
- Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Faiq H S Hussain
- TIU, Research Center, Tishk International University, Erbil, Iraq
| |
Collapse
|
7
|
Janardhanan JC, Bhaskaran RP, Praveen VK, Manoj N, Babu BP. Transition‐Metal‐Catalyzed Syntheses of Indazoles. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jith C. Janardhanan
- Department of Applied Chemistry and Inter University Centre for Nanomaterials and Devices (IUCND) Cochin University of Science and Technology (CUSAT) Cochin Kerala 682022 India
- Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Rasmi P. Bhaskaran
- Department of Chemistry National Institute of Technology Karnataka (NITK) Surathkal Karnataka 575025 India
| | - Vakayil K. Praveen
- Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Narayanapillai Manoj
- Department of Applied Chemistry and Inter University Centre for Nanomaterials and Devices (IUCND) Cochin University of Science and Technology (CUSAT) Cochin Kerala 682022 India
| | - Beneesh P. Babu
- Department of Chemistry National Institute of Technology Karnataka (NITK) Surathkal Karnataka 575025 India
| |
Collapse
|