1
|
Wang L, Zhang Z, Yu D, Yang L, Li L, He Y, Shi J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure-activity relationship. Bioorg Chem 2023; 138:106577. [PMID: 37178649 DOI: 10.1016/j.bioorg.2023.106577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.
Collapse
Affiliation(s)
- Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhengjie Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Liuqing Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yuxin He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
2
|
Nuesslein-Hildesheim B, Ferrero E, Schmid C, Huck C, Smith P, Tisserand S, Rubert J, Bornancin F, Eichlisberger D, Cenni B. Remibrutinib (LOU064) inhibits neuroinflammation driven by B cells and myeloid cells in preclinical models of multiple sclerosis. J Neuroinflammation 2023; 20:194. [PMID: 37633912 PMCID: PMC10463946 DOI: 10.1186/s12974-023-02877-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is a key signaling node in B cell receptor (BCR) and Fc receptor (FcR) signaling. BTK inhibitors (BTKi) are an emerging oral treatment option for patients suffering from multiple sclerosis (MS). Remibrutinib (LOU064) is a potent, highly selective covalent BTKi with a promising preclinical and clinical profile for MS and other autoimmune or autoallergic indications. METHODS The efficacy and mechanism of action of remibrutinib was assessed in two different experimental autoimmune encephalomyelitis (EAE) mouse models for MS. The impact of remibrutinib on B cell-driven EAE pathology was determined after immunization with human myelin oligodendrocyte glycoprotein (HuMOG). The efficacy on myeloid cell and microglia driven neuroinflammation was determined in the RatMOG EAE. In addition, we assessed the relationship of efficacy to BTK occupancy in tissue, ex vivo T cell response, as well as single cell RNA-sequencing (scRNA-seq) in brain and spinal cord tissue. RESULTS Remibrutinib inhibited B cell-dependent HuMOG EAE in dose-dependent manner and strongly reduced neurological symptoms. At the efficacious oral dose of 30 mg/kg, remibrutinib showed strong BTK occupancy in the peripheral immune organs and in the brain of EAE mice. Ex vivo MOG-specific T cell recall response was reduced, but not polyclonal T cell response, indicating absence of non-specific T cell inhibition. Remibrutinib also inhibited RatMOG EAE, suggesting that myeloid cell and microglia inhibition contribute to its efficacy in EAE. Remibrutinib did not reduce B cells, total Ig levels nor MOG-specific antibody response. In brain and spinal cord tissue a clear anti-inflammatory effect in microglia was detected by scRNA-seq. Finally, remibrutinib showed potent inhibition of in vitro immune complex-driven inflammatory response in human microglia. CONCLUSION Remibrutinib inhibited EAE models by a two-pronged mechanism based on inhibition of pathogenic B cell autoreactivity, as well as direct anti-inflammatory effects in microglia. Remibrutinib showed efficacy in both models in absence of direct B cell depletion, broad T cell inhibition or reduction of total Ig levels. These findings support the view that remibrutinib may represent a novel treatment option for patients with MS.
Collapse
Affiliation(s)
| | - Enrico Ferrero
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Cindy Schmid
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Huck
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Sarah Tisserand
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joelle Rubert
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Bruno Cenni
- Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
3
|
Smith CW, Harbi MH, Garcia‐Quintanilla L, Rookes K, Brown H, Poulter NS, Watson SP, Nicolson PLR, Thomas MR. The Btk inhibitor AB-95-LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and platelet procoagulant activity. J Thromb Haemost 2022; 20:2939-2952. [PMID: 36239466 PMCID: PMC9827830 DOI: 10.1111/jth.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND New antithrombotic therapies with less effect on bleeding are needed for coronary artery disease. The Btk inhibitor ibrutinib blocks atherosclerotic plaque-mediated thrombus formation. However, it is associated with increased bleeding, possibly due to non-Btk-mediated effects. Btk-deficient patients do not have bleeding issues, suggesting selective Btk inhibition as a promising antithrombotic strategy. OBJECTIVES To compare the antithrombotic effects of the highly selective Btk inhibitor AB-95-LH34 (LH34) with ibrutinib. METHODS Glycoprotein VI and G-protein coupled receptor-mediated platelet function and signaling were analyzed in healthy human donor platelets by lumi-aggregometry, flow adhesion, and western blot following 1 h treatment with inhibitors in vitro. RESULTS LH34 showed similar inhibition of Btk-Y223 phosphorylation as ibrutinib, but had no off-target inhibition of Src-Y418 phosphorylation. Similar dose-dependent inhibition of aggregation to atherosclerotic plaque material was observed for both. However, in response to Horm collagen, which also binds integrin α2β1, LH34 exhibited less marked inhibition than ibrutinib. Both LH34 and ibrutinib inhibited platelet adhesion and aggregation to plaque material at arterial shear. Ibrutinib demonstrated the most potent effect, with complete blockade at high concentrations. Platelet activation (P-selectin) and procoagulant activity (phosphatidylserine exposure) in thrombi were inhibited by LH34 and completely blocked by ibrutinib at high concentrations. Furthermore, plaque-induced thrombin generation was reduced by higher concentrations of LH34 and ibrutinib. CONCLUSIONS LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and procoagulant platelet activity in vitro, with less off-target inhibition of Src than ibrutinib, suggesting it is a promising antiplatelet therapy with the potential for reduced bleeding side effects.
Collapse
Affiliation(s)
- Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Maan H. Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Pharmacology and Toxicology Department, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Lourdes Garcia‐Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Kieran Rookes
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Helena Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
4
|
Comparison of Intermolecular Interactions of Irreversible and Reversible Inhibitors with Bruton’s Tyrosine Kinase via Molecular Dynamics Simulations. Molecules 2022; 27:molecules27217451. [DOI: 10.3390/molecules27217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a key protein from the TEC family and is involved in B-cell lymphoma occurrence and development. Targeting BTK is therefore an effective strategy for B-cell lymphoma treatment. Since previous studies on BTK have been limited to structure-function analyses of static protein structures, the dynamics of conformational change of BTK upon inhibitor binding remain unclear. Here, molecular dynamics simulations were conducted to investigate the molecular mechanisms of association and dissociation of a reversible (ARQ531) and irreversible (ibrutinib) small-molecule inhibitor to/from BTK. The results indicated that the BTK kinase domain was found to be locked in an inactive state through local conformational changes in the DFG motif, and P-, A-, and gatekeeper loops. The binding of the inhibitors drove the outward rotation of the C-helix, resulting in the upfolded state of Trp395 and the formation of the salt bridge of Glu445-Arg544, which maintained the inactive conformation state. Met477 and Glu475 in the hinge region were found to be the key residues for inhibitor binding. These findings can be used to evaluate the inhibitory activity of the pharmacophore and applied to the design of effective BTK inhibitors. In addition, the drug resistance to the irreversible inhibitor Ibrutinib was mainly from the strong interaction of Cys481, which was evidenced by the mutational experiment, and further confirmed by the measurement of rupture force and rupture times from steered molecular dynamics simulation. Our results provide mechanistic insights into resistance against BTK-targeting drugs and the key interaction sites for the development of high-quality BTK inhibitors. The steered dynamics simulation also offers a means to rapidly assess the binding capacity of newly designed inhibitors.
Collapse
|
5
|
Design, synthesis, and biological evaluation of pyrrolopyrimidine derivatives as novel Bruton's tyrosine kinase (BTK) inhibitors. Eur J Med Chem 2022; 241:114611. [DOI: 10.1016/j.ejmech.2022.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022]
|
6
|
Novel Bruton's tyrosine kinase inhibitor remibrutinib: Assessment of drug-drug interaction potential as a perpetrator of cytochrome P450 enzymes and drug transporters and the impact of covalent binding on possible drug interactions. Eur J Pharm Sci 2022; 172:106155. [PMID: 35247543 DOI: 10.1016/j.ejps.2022.106155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE Pharmacokinetic drug-drug interactions (DDIs) are investigated to ensure safety for patients receiving concomitant medications. Here, we present a strategy to characterise the DDI potential of remibrutinib, as an inhibitor of drug-metabolising enzymes and drug transporters, and as an inducer. Initial in vitro studies were performed, followed by a biomarker-based assessment of induction in a first in human study, concluded by a clinical study to verify initial results. Remibrutinib is a covalent inhibitor of Bruton's Tyrosine kinase inhibitor (BTKi) carrying a reactive acrylamide moiety (warhead), thus the potential contribution of covalent binding (off-target) to observed interactions was investigated as this could lead to prolonged and more potent drug interactions. METHODS DDI assessment was focused on the putative inhibition of key metabolic enzymes (Cytochrome P450, CYP), drug transporters and a potential effect on oral contraceptives (OC) by induction of enzymes that are involved in their clearance (CYP3A4). The impact of covalent binding was assessed by synthesising an identical reference molecule but with an inactivated warhead. RESULTS An interaction potential of limited clinical relevance was revealed for remibrutinib for CYP enzymes and drug transporters. The reactive warhead of remibrutinib had no impact on CYP enzyme and transporter inhibition, including time-dependent inhibition of CYP3A4, but may increase the induction potential of remibrutinib. CONCLUSIONS Observed inhibition of metabolic enzymes indicated that remibrutinib is a weak inhibitor of CYP3A4 and CYP2C9 and is not a clinically relevant inhibitor of uptake and efflux transporters, except for intestinal P-glycoprotein and breast cancer resistance protein inhibition. OC may be safely administered and are effective when given with pharmacologically relevant doses of remibrutinib.
Collapse
|
7
|
Lu X, Smaill JB, Patterson AV, Ding K. Discovery of Cysteine-targeting Covalent Protein Kinase Inhibitors. J Med Chem 2021; 65:58-83. [PMID: 34962782 DOI: 10.1021/acs.jmedchem.1c01719] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small molecule covalent kinase inhibitors (CKIs) have entered a new era in drug discovery, which have the advantage for sustained target inhibition and high selectivity. An increased understanding of binding kinetics of CKIs and discovery of additional irreversible and reversible-covalent cysteine-targeted warheads has inspired the development of this area. Herein, we summarize the major medicinal chemistry strategies employed in the discovery of these representative CKIs, which are categorized by the location of the target cysteine within seven main regions of the kinase: the front region, the glycine rich loop (P-loop), the hinge region, the DFG region, the activation loop (A-loop), the catalytic loop (C-loop), and the remote loop. The emphasis is placed on the design and optimization strategies of CKIs that are generated by addition of a warhead to a reversible lead/inhibitor scaffold. In addition, we address the challenges facing this area of drug discovery.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
8
|
Tasso B, Spallarossa A, Russo E, Brullo C. The Development of BTK Inhibitors: A Five-Year Update. Molecules 2021; 26:molecules26237411. [PMID: 34885993 PMCID: PMC8659154 DOI: 10.3390/molecules26237411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) represented, in the past ten years, an important target for the development of new therapeutic agents that could be useful for cancer and autoimmune disorders. To date, five compounds, able to block BTK in an irreversible manner, have been launched in the market, whereas many reversible BTK inhibitors (BTKIs), with reduced side effects that are more useful for long-term administration in autoimmune disorders, are under clinical investigation. Despite the presence in the literature of many articles and reviews, studies on BTK function and BTKIs are of great interest for pharmaceutical companies as well as academia. This review is focused on compounds that have appeared in the literature from 2017 that are able to block BTK in an irreversible or reversible manner; also, new promising tunable irreversible inhibitors, as well as PROTAC molecules, have been reported. This summary could improve the knowledge of the chemical diversity of BTKIs and provide information for future studies, particularly from the medicinal chemistry point of view. Data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "BTK" and "BTK inhibitors" as keywords.
Collapse
|
9
|
Kaul M, End P, Cabanski M, Schuhler C, Jakab A, Kistowska M, Kinhikar A, Maiolica A, Sinn A, Fuhr R, Cenni B. Remibrutinib (LOU064): A selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin Transl Sci 2021; 14:1756-1768. [PMID: 33834628 PMCID: PMC8504815 DOI: 10.1111/cts.13005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Safe and effective new oral therapies for autoimmune, allergic, and inflammatory conditions remain a significant therapeutic need. Here, we investigate the human pharmacokinetics, pharmacodynamics (PDs), and safety of the selective, covalent Bruton's tyrosine kinase (BTK) inhibitor, remibrutinib. Study objectives were explored in randomized single and multiple ascending dose (SAD and MAD, respectively) cohorts with daily doses up to 600 mg, and a crossover food effect (FE) cohort, in adult healthy subjects without (SAD [n =80]/FE [n =12]) or with asymptomatic atopic diathesis (MAD [n =64]). A single oral dose of remibrutinib (0.5-600 mg) was rapidly absorbed (time to maximum concentration = 0.5 h-1.25 h) with an apparent blood clearance of 280-560 L/h and apparent volume of distribution of 400-15,000 L. With multiple doses (q.d. and b.i.d.), no pronounced accumulation of remibrutinib was detected (mean residence time was <3 h). Food intake showed no clinically relevant effect on remibrutinib exposure suggesting no need for dose adaptation. With remibrutinib doses greater than or equal to 30 mg, blood BTK occupancy was greater than 95% for at least 24 h (SAD). With MAD, remibrutinib reached near complete blood BTK occupancy at day 12 predose with greater than or equal to 10 mg q.d. Near complete basophil or skin prick test (SPT) inhibition at day 12 predose was achieved at greater than or equal to 50 mg q.d. for CD63 and at greater than or equal to 100 mg q.d. for SPT. Remibrutinib was well-tolerated at all doses without any dose-limiting toxicity. Remibrutinib showed encouraging blood and skin PDs with a favorable safety profile, supporting further development for diseases driven by mast cells, basophils, and B-cells, such as chronic spontaneous urticaria, allergic asthma, or Sjögren's syndrome.
Collapse
Affiliation(s)
- Martin Kaul
- Novartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Peter End
- Novartis Institutes for Biomedical ResearchBaselSwitzerland
| | | | | | | | | | - Arvind Kinhikar
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | | | - Angela Sinn
- Early Phase Clinical UnitParexel InternationalBerlinGermany
| | - Rainard Fuhr
- Early Phase Clinical UnitParexel InternationalBerlinGermany
| | - Bruno Cenni
- Novartis Institutes for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
10
|
Liu J, Chen C, Wang D, Zhang J, Zhang T. Emerging small-molecule inhibitors of the Bruton's tyrosine kinase (BTK): Current development. Eur J Med Chem 2021; 217:113329. [PMID: 33740548 DOI: 10.1016/j.ejmech.2021.113329] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/29/2022]
Abstract
Therapy based on Bruton's tyrosine kinase (BTK) inhibitors one of the major treatment options currently recommended for lymphoma patients. The first generation of BTK inhibitor, Ibrutinib, achieved remarkable progress in the treatment of B-cell malignancies, but still has problems with drug-resistance or off-target induced serious side effects. Therefore, numerous new BTK inhibitors were developed to address this unmet medical need. In parallel, the effect of BTK inhibitors against immune-related diseases has been evaluated in clinical trials. This review summarizes recent progress in the research and development of BTK inhibitors, with a focus on structural characteristics and structure-activity relationships. The structure-refinement process of representative pharmacophores as well as their effects on binding affinity, biological activity and pharmacokinetics profiles were analyzed. The advantages and disadvantages of reversible/irreversible BTK inhibitors and their potential implications were discussed to provide a reference for the rational design and development of novel potent BTK inhibitors.
Collapse
Affiliation(s)
- Jiakuo Liu
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, No.9 Anxiangbeili Road, Chaoyang District, Beijing, 100101, PR China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Jie Zhang
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, No.9 Anxiangbeili Road, Chaoyang District, Beijing, 100101, PR China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
11
|
von Hundelshausen P, Siess W. Bleeding by Bruton Tyrosine Kinase-Inhibitors: Dependency on Drug Type and Disease. Cancers (Basel) 2021; 13:1103. [PMID: 33806595 PMCID: PMC7961939 DOI: 10.3390/cancers13051103] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bruton tyrosine kinase (Btk) is expressed in B-lymphocytes, myeloid cells and platelets, and Btk-inhibitors (BTKi) are used to treat patients with B-cell malignancies, developed against autoimmune diseases, have been proposed as novel antithrombotic drugs, and been tested in patients with severe COVID-19. However, mild bleeding is frequent in patients with B-cell malignancies treated with the irreversible BTKi ibrutinib and the recently approved 2nd generation BTKi acalabrutinib, zanubrutinib and tirabrutinib, and also in volunteers receiving in a phase-1 study the novel irreversible BTKi BI-705564. In contrast, no bleeding has been reported in clinical trials of other BTKi. These include the brain-penetrant irreversible tolebrutinib and evobrutinib (against multiple sclerosis), the irreversible branebrutinib, the reversible BMS-986142 and fenebrutinib (targeting rheumatoid arthritis and lupus erythematodes), and the reversible covalent rilzabrutinib (against pemphigus and immune thrombocytopenia). Remibrutinib, a novel highly selective covalent BTKi, is currently in clinical studies of autoimmune dermatological disorders. This review describes twelve BTKi approved or in clinical trials. By focusing on their pharmacological properties, targeted disease, bleeding side effects and actions on platelets it attempts to clarify the mechanisms underlying bleeding. Specific platelet function tests in blood might help to estimate the probability of bleeding of newly developed BTKi.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
12
|
Iskierka-Jażdżewska E, Robak T. Investigational treatments for chronic lymphocytic leukemia: a focus on phase 1 and 2 clinical trials. Expert Opin Investig Drugs 2020; 29:709-722. [PMID: 32407139 DOI: 10.1080/13543784.2020.1770225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: During recent years, the introduction of novel drugs, particularly small molecule inhibitors, has led to remarkable progress in both previously untreated and relapsed/refractory (RR) patients in chronic lymphocytic leukemia (CLL). However, further research is necessary to find an optimal cure that responds to the individual needs of the patient. Areas covered: This review discusses new agents in phase 1 and 2 clinical trials currently underway in CLL patients. A literature review of the MEDLINE database for articles in English concerning novel drugs, clinical trials, phase 1, phase 2 and CLL was conducted via PubMed. Publications from 2000 through January 2020 were scrutinized. Conference proceedings from the previous five years of the American Society of Hematology, European Hematology Association and American Society of Clinical Oncology were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. The search also included clinical trials registered in clinicaltrials.gov. Expert opinion: The use of BTK and PI3Kδ inhibitors and BCL-2 antagonist have changed the treatment strategy of CLL. Several clinical trials with novel, unapproved agents are currently ongoing. Their findings should define the role of these novel drugs in the treatment of patients with previously untreated and RR CLL.
Collapse
Affiliation(s)
| | - Tadeusz Robak
- Department of Hematology, Copernicus Memorial Hospital, Lodz, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
13
|
Angst D, Gessier F, Janser P, Vulpetti A, Wälchli R, Beerli C, Littlewood-Evans A, Dawson J, Nuesslein-Hildesheim B, Wieczorek G, Gutmann S, Scheufler C, Hinniger A, Zimmerlin A, Funhoff EG, Pulz R, Cenni B. Discovery of LOU064 (Remibrutinib), a Potent and Highly Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase. J Med Chem 2020; 63:5102-5118. [DOI: 10.1021/acs.jmedchem.9b01916] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|