1
|
Dey U, Demirci S, Ortega R, Rawah T, Chaudary A, Liu F, Yang Z, Huang B, Jiang S. Beyond Surfactants: Janus Particles for Functional Interfaces and Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2980-2993. [PMID: 39883033 PMCID: PMC11823612 DOI: 10.1021/acs.langmuir.4c04612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures. The superior interfacial stability and tunable amphiphilicity of JPs make them highly effective emulsifiers and dispersants, particularly in emulsion polymerization systems. Beyond these applications, JPs demonstrate immense potential as coating materials, facilitating the development of eco-friendly, anti-icing, and antifouling coatings. A comparative discussion with zwitterionic polymers also highlights the distinctive advantages of each system. This review emphasizes that while JPs mimic some of the behaviors of small molecular surfactants, they also open doors to entirely new applications, making them indispensable as next-generation functional materials.
Collapse
Affiliation(s)
- Utsav
Kumar Dey
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Serkan Demirci
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ricardo Ortega
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Thamer Rawah
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Aneeba Chaudary
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Fei Liu
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zhengtao Yang
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Bingrui Huang
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Shan Jiang
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Yang C, Shi Y, Zhang Y, He J, Zhang Z, Jia X, Yuan R, Xu W. A bivariate fluorescence biosensor based on Janus DNA nanoarchitecture-loaded dual-emissive Ag nanoclusters as bi-responsive signaling reporters. Biosens Bioelectron 2024; 263:116621. [PMID: 39098283 DOI: 10.1016/j.bios.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Constructing label-free bivariate fluorescence biosensor would be intriguing and desired for the recognizable and accurate detection of two specific DNA segments, yet the design of functional DNA structures with low overlapped interference might be challenging. Herein in this work, a double-faced Janus DNA nanoarchitecture (JDNA) with bi-responsive recognition regions on opposite sides was assembled, which consisted of two substrate strands and two template strands for loading green-/red-emissive Ag nanoclusters (gAgNC and rAgNC) as bivariate signaling reporters. Of note, the hybridized double helix in the middle rationally oriented two flank faces and stabilized the rigid conformation of JDNA, while the template sequences of bicolor clusters were blocked to minimize non-specific background leakage. Upon inputting two targets, the discernible hairpins lost their hairpin structures due to forming two dsDNA complexes. They were executed to simultaneously invade JDNA for activating two individual target-recycled strand displacement (TRSD) events, guiding signal transduction and efficient amplification. Consequently, the clustering templates were unlocked via the tailored conformation switch of JDNA, in which gAgNC and rAgNC were in situ synthesized in two diagonal positions, thereby significantly emitting bi-responsive signal without cross interference. Benefited from the logic integration of double-faced JDNA and TRSD, a label-free, sensitive and specific bivariate fluorescence approach was developed, which would open a new avenue for the potential application in biosensing and bioanalysis.
Collapse
Affiliation(s)
- Chunli Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yanan Shi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuqing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhihan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xinyue Jia
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Lopez-Ceja J, Flores V, Juliano S, Machler S, Smith S, Mansingh G, Shen M, Tanjeem N. Programmable Crowding and Tunable Phases in a Binary Mixture of Colloidal Particles under Light-Driven Thermal Convection. J Phys Chem B 2024; 128:9244-9254. [PMID: 39047259 DOI: 10.1021/acs.jpcb.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We employ photothermally driven self-assembly of colloidal particles to design microscopic structures with programmable size and tunable order. The experimental system is based on a binary mixture of "plasmonic heater" gold nanoparticles and "assembly building block" microparticles. Photothermal heating of the gold nanoparticles under visible light causes a natural convection flow that efficiently assembles the microscale building block particles (diameter 1-10 μm) into a monolayer. We identify the onset of active Brownian motion of colloidal particles under this convective flow by varying the conditions of light intensity, gold nanoparticle concentration, and sample height. We realize a crowded assembly of microparticles around the center of illumination and show that the size of the particle crowd can be programmed using patterned light illumination. In a binary mixture of gold nanoparticles and polystyrene microparticles, we demonstrate the formation of rapid and large-scale crystalline monolayers, covering an area of 0.88 mm2 within 10 min. We find that the structural order of the assembly can be tuned by varying the surface charge of the nanoparticles and the size of the microparticles, giving rise to the formation of different phases-colloidal crystals, crowds, and gels. Using Monte Carlo simulations, we explain how the phases emerge from the interplay between hydrodynamic and electrostatic interactions, as well as the assembly kinetics. Our study demonstrates the promise of self-assembly with programmable shapes and structural order under nonequilibrium conditions using an accessible setup comprising only binary mixtures and LED light.
Collapse
Affiliation(s)
- Jose Lopez-Ceja
- Department of Mechanical Engineering, California State University, Fullerton, California 92831, United states
| | - Vanessa Flores
- Department of Mechanical Engineering, California State University, Fullerton, California 92831, United states
| | - Shirlaine Juliano
- Department of Biology, California State University, Fullerton, California 92831, United states
| | - Sean Machler
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Stephen Smith
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Gargi Mansingh
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Meng Shen
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Nabila Tanjeem
- Department of Physics, California State University, Fullerton, California 92831, United states
| |
Collapse
|
4
|
Qin L, Wang H, Zhang Z. Synthesis and Assembly of Photoresponsive Colloidal Tubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402389. [PMID: 38757548 DOI: 10.1002/smll.202402389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Inspired by the sophisticated multicomponent and multistage assembly of proteins and their mixtures in living cells, this study rationally designs and fabricates photoresponsive colloidal tubes that can self-assemble and hybrid-assemble when mixed with colloidal spheres and rods. Time-resolved observation and computer simulation reveal that the assembly is driven by phoretic attraction originating from osmotic pressures. These pressures are induced by the chemical concentration gradients generated by the photochemical reaction caused by colloidal tubes in a H2O2 solution under ultraviolet (UV) irradiation. The assembled structure is dictated by the size and shape of the constituent colloids as well as the intensity of the UV irradiation. Additionally, the resulting assembly can undergo self-propelled motion originating from the broken symmetry of the surrounding concentration gradients. This motion can be steered by a magnetic field and used for microscale cargo delivery. The study demonstrates a facile synthesis method for colloidal tubes and highlights their unique potential for controlled, hierarchical self-assembly and hybrid-assembly.
Collapse
Affiliation(s)
- Lulu Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
5
|
Kamp M, Sacanna S, Dullens RPA. Spearheading a new era in complex colloid synthesis with TPM and other silanes. Nat Rev Chem 2024; 8:433-453. [PMID: 38740891 DOI: 10.1038/s41570-024-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs.
Collapse
Affiliation(s)
- Marlous Kamp
- Van 't Hoff Laboratory for Physical & Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY, USA
| | - Roel P A Dullens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Zhang T, Lyu D, Xu W, Feng X, Ni R, Wang Y. Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters. Nat Commun 2023; 14:8494. [PMID: 38129397 PMCID: PMC10739893 DOI: 10.1038/s41467-023-44154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Janus particles, which have an attractive patch on the otherwise repulsive surface, have been commonly employed for anisotropic colloidal assembly. While current methods of particle synthesis allow for control over the patch size, they are generally limited to producing dome-shaped patches with a high symmetry (C∞). Here, we report on the synthesis of Janus particles with patches of various tunable shapes, having reduced symmetries ranging from C2v to C3v and C4v. The Janus particles are synthesized by partial encapsulation of an octahedral metal-organic framework particle (UiO-66) in a polymer matrix. The extent of encapsulation is precisely regulated by a stepwise, asymmetric dewetting process that exposes selected facets of the UiO-66 particle. With depletion interaction, the Janus particles spontaneously assemble into colloidal clusters reflecting the particles' shapes and patch symmetries. We observe the formation of chiral structures, whereby chirality emerges from achiral building blocks. With the ability to encode symmetry and directional bonding information, our strategy could give access to more complex colloidal superstructures through assembly.
Collapse
Affiliation(s)
- Tianran Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xuan Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
7
|
Ding L, Chen X, Ma W, Li J, Liu X, Fan C, Yao G. DNA-mediated regioselective encoding of colloids for programmable self-assembly. Chem Soc Rev 2023; 52:5684-5705. [PMID: 37522252 DOI: 10.1039/d2cs00845a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
How far we can push chemical self-assembly is one of the most important scientific questions of the century. Colloidal self-assembly is a bottom-up technique for the rational design of functional materials with desirable collective properties. Due to the programmability of DNA base pairing, surface modification of colloidal particles with DNA has become fundamental for programmable material self-assembly. However, there remains an ever-lasting demand for surface regioselective encoding to realize assemblies that require specific, directional, and orthogonal interactions. Recent advances in surface chemistry have enabled regioselective control over the formation of DNA bonds on the particle surface. In particular, the structural DNA nanotechnology provides a simple yet powerful design strategy with unique regioselective addressability, bringing the complexity of colloidal self-assembly to an unprecedented level. In this review, we summarize the state-of-art advances in DNA-mediated regioselective surface encoding of colloids, with a focus on how the regioselective encoding is introduced and how the regioselective DNA recognition plays a crucial role in the self-assembly of colloidal structures. This review highlights the advantages of DNA-based regioselective modification in improving the complexity of colloidal assembly, and outlines the challenges and opportunities for the construction of more complex architectures with tailored functionalities.
Collapse
Affiliation(s)
- Longjiang Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenhe Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Gao F, Zhang L, Yang L, Zhou X, Zhang Y. Structural Properties of Graphene Oxide Prepared from Graphite by Three Different Methods and the Effect on Removal of Cr(VI) from Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:279. [PMID: 36678032 PMCID: PMC9867312 DOI: 10.3390/nano13020279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 05/27/2023]
Abstract
Herein, three types of graphene oxides (GOs, GO-M1, GO-M2 and GO-M3) have been successfully prepared from graphite by three different methods and utilized for the removal of Cr(VI) from aqueous solutions. Further, the effects of initial concentration and pH, adsorbent dosage, contact time and temperature on the adsorption performance of GOs were investigated by batch adsorption experiments. Furthermore, the adsorption mechanisms for Cr(VI) adsorption by GOs are mainly the redox reaction and electrostatic attraction, while there are also pore filling, ion exchange and complexation involved in these adsorption processes. The adsorption kinetic and isotherm data indicate that these adsorption processes of GOs on Cr(VI) are dominantly monolayer chemisorption and equilibrium can be reached in 30 min. The saturation adsorption capacities (Qm, 298.15 K) of GO-M1, GO-M2 and GO-M3 for Cr(VI) are estimated to be 3.5412 mg⋅g-1, 2.3631 mg⋅g-1 and 7.0358 mg⋅g-1, respectively. Moreover, the adsorption thermodynamic study showed that these adsorption processes of Cr(VI) by the three types of GOs at 298.15 K to 323.15 K are endothermic, entropy-driven and thermodynamically spontaneous and feasible. Overall, these findings provided vital insights into the mechanism and application of Cr(VI) removal by GOs.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Sato M. Two-Dimensional Structures Formed by Triblock Patchy Particles with Two Different Patches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15404-15412. [PMID: 36446728 DOI: 10.1021/acs.langmuir.2c02699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional structures formed by spherical triblock patchy particles are examined by performing Monte Carlo simulations. In the model, the triblock patchy particles have two different types of patches at the polar positions. The patch sizes are different from each other, and the attractive interaction acts only between the same types of patches. The particles translate on a flat plane and rotate three-dimensionally. When varying the two patch sizes, the pressure, and interaction energy, various structures are observed. When the difference between two patch sizes is small, kagome lattices, hexagonal structures, and two-dimensional dodecagonal quasi-crystal structures are observed. When the difference between two patch sizes is large, chain-like structures are created. With lower temperature, sparse structures such as ring-like structures form.
Collapse
Affiliation(s)
- Masahide Sato
- Emerging Media Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
10
|
Gao Y, Liu K, Lakerveld R, Ding X. Staged Assembly of Colloids Using DNA and Acoustofluidics. NANO LETTERS 2022; 22:6907-6915. [PMID: 35984231 DOI: 10.1021/acs.nanolett.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Assembly of DNA-coated colloids (DNACCs) provides a practical route to programming complex self-assembled materials at the micro/nanoscale. So far, the programmability of DNACC assembly has been extensively exploited internally using different DNA sequences or colloid geometry so that the assembly is mainly manipulated with single-particle spatial resolution such as in crystallization. In this Letter, we present an acoustic approach to externally programming the DNACC assembly with control of spatial resolution over larger scales. We demonstrate assembly of the DNACCs under different acoustic frequencies from stage to stage to produce hierarchical structures that are difficult to fabricate when using DNA coating alone. By programming the acoustic wave frequency, amplitude, and phase, colloidal structures with different morphologies can be assembled. The nonspecific driving force based on acoustic radiation forces at each stage allows our approach to be adopted for most colloidal systems without specific requirements on particle or medium properties.
Collapse
Affiliation(s)
- Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Kun Liu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
11
|
Gui H, Li Y, Du D, Bo Meng Q, Song XM, Liang F. Preparation of asymmetric particles by controlling the phase separation of seeded emulsion polymerization with ethanol/water mixture. J Colloid Interface Sci 2022; 618:496-506. [PMID: 35366477 DOI: 10.1016/j.jcis.2022.03.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
Alcohols are discovered for the first time to tune the morphology of poly(vinyl benzyl chloride)-poly(3-methacryloxypropyltrimethoxysilane) (PVBC-PMPS) composite particles through seeded emulsion polymerization within the alcohol/water mixture. Here, monodispersed linear PVBC particles was synthesized through the dispersion polymerization and employed as the seeds. The as-obtained PVBC-PMPS composite particles could be dramatically tuned from core-shell structures to snowman-like particles, to dumbbell-shaped particles, to inverse snowman-like particles when the ethanol content in reaction mixtures is only adjusted within a narrow range. The morphology of fresh PMPS bulges was observed after removing the linear PVBC seeds with N,N'-dimethyl formamide, and their formation mechanism was studied by monitoring the free radical polymerization and sol-gel process of 3-methacryloxypropyltrimethoxysilane. It has been confirmed that the sol-gel kinetics were the main factor on the particles' morphology. In addition, morphologies of PVBC-PMPS particles were also varied by the MPS feeding amount, types of the co-solvent and pH values of alcohol/water mixtures.
Collapse
Affiliation(s)
- Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yuanyuan Li
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Deming Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Bo Meng
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Gehrels EW, Rogers WB, Zeravcic Z, Manoharan VN. Programming Directed Motion with DNA-Grafted Particles. ACS NANO 2022; 16:9195-9202. [PMID: 35686741 DOI: 10.1021/acsnano.2c01454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colloidal particles can be programmed to interact in complex ways by functionalizing them with DNA oligonucleotides. Adding DNA strand-displacement reactions to the system allows these interparticle interactions to respond to specific changes in temperature. We present the requirements for thermally driven directed motion of colloidal particles, and we explore how these conditions can be realized experimentally using strand-displacement reactions. To evaluate the concept, we build and test a colloidal "dancer": a single particle that can be driven to move through a programmed sequence of steps along a one-dimensional track composed of other particles. The results of these tests reveal the capabilities and limitations of using DNA-mediated interactions for applications in dynamic systems. Specifically, we discuss how to design the substrate to limit complexity while permitting full control of the motile component, how to ratchet the interactions to move over many substrate positions with a limited regime of control parameters, and how to use technological developments to reduce the probability of detachment without sacrificing speed.
Collapse
Affiliation(s)
- Emily W Gehrels
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - W Benjamin Rogers
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Zorana Zeravcic
- Gulliver Lab, UMR 7083, ESPCI Paris PSL Research University, Paris 75005, France
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
13
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Qi X, Zhao Y, Lachowski K, Boese J, Cai Y, Dollar O, Hellner B, Pozzo L, Pfaendtner J, Chun J, Baneyx F, Mundy CJ. Predictive Theoretical Framework for Dynamic Control of Bioinspired Hybrid Nanoparticle Self-Assembly. ACS NANO 2022; 16:1919-1928. [PMID: 35073061 DOI: 10.1021/acsnano.1c04923] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
At-will tailoring of the formation and reconfiguration of hierarchical structures is a key goal of modern nanomaterial design. Bioinspired systems comprising biomacromolecules and inorganic nanoparticles have potential for new functional material structures. Yet, consequential challenges remain because we lack a detailed understanding of the temporal and spatial interplay between participants when it is mediated by fundamental physicochemical interactions over a wide range of scales. Motivated by a system in which silica nanoparticles are reversibly and repeatedly assembled using a homobifunctional solid-binding protein and single-unit pH changes under near-neutral solution conditions, we develop a theoretical framework where interactions at the molecular and macroscopic scales are rigorously coupled based on colloidal theory and atomistic molecular dynamics simulations. We integrate these interactions into a predictive coarse-grained model that captures the pH-dependent reversibility and accurately matches small-angle X-ray scattering experiments at collective scales. The framework lays a foundation to connect microscopic details with the macroscopic behavior of complex bioinspired material systems and to control their behavior through an understanding of both equilibrium and nonequilibrium characteristics.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yundi Zhao
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Kacper Lachowski
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Julia Boese
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Orion Dollar
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Brittney Hellner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Lilo Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Levich Institute and Department of Chemical Engineering, CUNY City College of New York, New York, New York 10031, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
15
|
Tanjeem N, Minnis MB, Hayward RC, Shields CW. Shape-Changing Particles: From Materials Design and Mechanisms to Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105758. [PMID: 34741359 PMCID: PMC9579005 DOI: 10.1002/adma.202105758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Indexed: 05/05/2023]
Abstract
Demands for next-generation soft and responsive materials have sparked recent interest in the development of shape-changing particles and particle assemblies. Over the last two decades, a variety of mechanisms that drive shape change have been explored and integrated into particulate systems. Through a combination of top-down fabrication and bottom-up synthesis techniques, shape-morphing capabilities extend from the microscale to the nanoscale. Consequently, shape-morphing particles are rapidly emerging in a variety of contexts, including photonics, microfluidics, microrobotics, and biomedicine. Herein, the key mechanisms and materials that facilitate shape changes of microscale and nanoscale particles are discussed. Recent progress in the applications made possible by these particles is summarized, and perspectives on their promise and key open challenges in the field are discussed.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Montana B Minnis
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Ryan C Hayward
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Charles Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
16
|
Liu B, Ravaine S, Duguet E. Solvent-Induced Assembly of One-Patch Silica Nanoparticles into Robust Clusters, Wormlike Chains and Bilayers. NANOMATERIALS 2021; 12:nano12010100. [PMID: 35010053 PMCID: PMC8747025 DOI: 10.3390/nano12010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
We report the synthesis and solvent-induced assembly of one-patch silica nanoparticles in the size range of 100–150 nm. They consisted, as a first approximation, of silica half-spheres of which the truncated face was itself concave and carried in its center a polymeric patch made of grafted polystyrene chains. The multistage synthesis led to 98% pure batches and allowed a fine control of the patch-to-particle size ratio from 0.69 to 1.54. The self-assembly was performed in equivolume mixtures of tetrahydrofuran and ethanol, making the polymeric patches sticky and ready to coalesce together. The assembly kinetics was monitored by collecting samples over time and analyzing statistically their TEM images. Small clusters, such as dimers, trimers, and tetramers, were formed initially and then evolved in part into micelles. Accordingly to previous simulation studies, more or less branched wormlike chains and planar bilayers were observed in the long term, when the patch-to-particle size ratio was high enough. We focused also on the experimental conditions that could allow preparing small clusters in a good morphology yield.
Collapse
Affiliation(s)
- Bin Liu
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France;
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, 33600 Pessac, France;
| | - Serge Ravaine
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, 33600 Pessac, France;
| | - Etienne Duguet
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France;
- Correspondence: ; Tel.: +33-540-002-651
| |
Collapse
|
17
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
18
|
Sato M. Clusters formed by dumbbell-like one-patch particles confined in thin systems. Sci Rep 2021; 11:18078. [PMID: 34508134 PMCID: PMC8433354 DOI: 10.1038/s41598-021-97542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Performing isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model . The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between these centers. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q<1$$\end{document}q<1. With increasing q, the clusters become chain-like . When q increases further, elongated clusters and regular polygonal clusters are created. In the simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.
Collapse
Affiliation(s)
- Masahide Sato
- Emerging Media Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
19
|
Frank B, Perovic M, Djalali S, Antonietti M, Oschatz M, Zeininger L. Synthesis of Polymer Janus Particles with Tunable Wettability Profiles as Potent Solid Surfactants to Promote Gas Delivery in Aqueous Reaction Media. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32510-32519. [PMID: 34185504 PMCID: PMC8283753 DOI: 10.1021/acsami.1c07259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Janus particles exhibit a strong tendency to directionally assemble and segregate to interfaces and thus offer advantages as colloidal analogues of molecular surfactants to improve the stability of multiphasic mixtures. Investigation and application of the unique adsorption properties require synthetic procedures that enable careful design and reliable control over the particles' asymmetric chemistry and wettability profiles with high morphological uniformity across a sample. Herein, we report on a novel one-step synthetic approach for the generation of amphiphilic polymer Janus particles with highly uniform and tunable wettability contrasts, which is based on using reconfigurable bi-phasic Janus emulsions as versatile particle scaffolds. Two phase-separated acrylate oils were used as the constituent droplet phases and transformed into their solidified Janus particle replicas via UV-induced radical polymerization. Using Janus emulsions as particle precursors offers the advantage that their internal droplet geometry can be fine-tuned by changing the force balance of surface tensions acting at the individual interfaces via surfactants or the volume ratio of the constituent phases. In addition, preassembled functional surfactants at the droplet interfaces can be locked in position upon polymerization, which enables both access toward postfunctionalization reaction schemes and the generation of highly uniform Janus particles with adjustable wettability profiles. Depending on the particle morphology and wettability, their interfacial position can be adjusted, which allows us to stabilize either air bubbles-in-water or water droplets-in-air (liquid marbles). Motivated by the interfacial activity of the particles and particularly the longevity of the resulting particle-stabilized air-in-water bubbles, we explored their ability to promote the delivery of oxygen inside a liquid-phase reaction medium, namely, for the heterogeneous Au-NP-mediated catalytic oxidation of d-glucose. We observed a 2.2-fold increase in the reaction rate attributed to the increase of the local concentration of oxygen around catalysts, thus showcasing a new strategy to overcome the limited solubility of gases in aqueous reaction media.
Collapse
Affiliation(s)
- Bradley
D. Frank
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Milena Perovic
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saveh Djalali
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Oschatz
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Faculty
of Chemistry and Earth Sciences, Friedrich-Schiller-University
of Jena, Philosophenweg
7a, 07743 Jena, Germany
| | - Lukas Zeininger
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
20
|
Sato M. Effect of the Interaction Length on Clusters Formed by Spherical One-Patch Particles on Flat Planes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4213-4221. [PMID: 33780624 DOI: 10.1021/acs.langmuir.1c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Considering that one-patch particles rotate three-dimensionally and translate on a two-dimensional flat plane, I performed isothermal-isochoric Monte Carlo simulations to study how two-dimensional self-assemblies formed by spherical patchy particles depending on the interaction length and patch area. As the interaction potential between one-patch particles, the Kern-Frenkel (KF) potential is used in the simulations. With increasing patch area, the shape of the most numerous clusters changes from dimers to island-like clusters with a square lattice via triangular trimers, square tetramers, and chain-like clusters when the interaction length is as long as the particle radius. With a longer interaction length, other shapes of polygonal clusters such as another type of square tetramers, two types of pentagonal pentamers, hexagonal hexamers, and hexagonal heptamers also form.
Collapse
Affiliation(s)
- Masahide Sato
- Information Media Center, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
21
|
Wang Z, Wang Z, Li J, Wang Y. Directional and Reconfigurable Assembly of Metallodielectric Patchy Particles. ACS NANO 2021; 15:5439-5448. [PMID: 33635049 DOI: 10.1021/acsnano.1c00104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Colloidal particles with surface patches can self-assemble with high directionality, but the resulting assemblies cannot reconfigure unless the patch arrangement (number, symmetry, etc.) is altered. While external fields with tunable inputs can guide the assembly of dynamic structures, they encourage particle alignment relative to its shape rather than the surface patterns. Here, we report on the synthesis of metallodielectric patchy particles and their assembly under the AC electric field, which gives rise to a series of structures including two-layer alternating chains, open-brick walls, staggering stacks, and vertical chains that are directed by the patches yet reconfigurable by the field. The configurations of the assemblies (e.g., the chains) can be further switched between a rigid and a flexible state emulating the conformations of polymers. Our work suggests that, for directed colloidal assembly, the particle complexities (patches and shapes) can be coupled with the external manipulations in a cooperative manner for creating materials with precise yet reconfigurable structures.
Collapse
Affiliation(s)
- Zuochen Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jiahui Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|