1
|
Wen X, Chen Y, He Y, Yuan R, Chen S. Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis. Anal Chem 2025; 97:2094-2102. [PMID: 39841891 DOI: 10.1021/acs.analchem.4c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy. Astonishingly, the IR@PFN nanoparticles (NPs) synthesized from IR 783 and PFN by a nanoprecipitation method emitted a strong coreactant-free NIR-ECL signal at +1.05 V, and the maximum emission wavelength was 815 nm. IR@PFN NPs were integrated in a spontaneous entropy-driven chain replacement (ESDR) reaction to achieve ECL analysis of microRNA-21 (miRNA-21), and the limit of detection was as low as 0.25 fM. IR@PFN NPs created a promising coreactant-free NIR-ECL platform for bioanalysis and imaging, providing a novel NIR-ECL detection method for miRNA-21.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yingying Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
2
|
Huang YJ, Yeh JW, Yang ACM. Photonics of High-Entropy Polymers Revealing Molecular Dispersion via Polymer Mixing. ACS NANO 2024; 18:32759-32768. [PMID: 39549014 PMCID: PMC11603877 DOI: 10.1021/acsnano.4c10585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Blending multiple polymers together to form the so-called "high-entropy polymers (HEPs)" can generate the effects of molecular dispersion in addition to suppressing polymer phase separation. We embedded a semiconducting polymer (conjugated polymers, CPs) in an optically inert matrix composed of n polymer species and found that a molecule-level dispersion is attained in HEPs defined as n ≥ 5. In the regime of dilute CP concentrations, the photonic properties vary widely in the n = 1 matrices owing to diverse solubility parameters, but the distribution narrows with n, and the CP starts to exhibit behaviors of molecule-level dispersion at n ≥ 5, where the matrix polymers compete with each other to exert direct influences on the embedded CP. Specifically, for MEH-PPV, increasing n reduces the fluorescence redshift and spectral width from diminishing aggregation. For the rigid PFO molecules, increasing n creates a dilution effect facilitating formation of the low-energy planar β-phase. For the flexible regioregular P3HT-rr, HEPs offer well-dispersed amorphous chains highly susceptible to chain environments, thus influencing ηR's in the quasi-fixed amorphous-crystalline energy transfer landscape. The HEP effects continue for greater CP concentrations, consistent with the matrix dispersing behaviors in the dilute regime. This work demonstrates a molecular-level dispersion by HEPs, offering a method of molecular tailoring for polymer research and applications via simple mixing.
Collapse
Affiliation(s)
- Yu-Jr Huang
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jien-Wei Yeh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
- High
Entropy
Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Arnold Chang-Mou Yang
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
Nakamura T, Omagari S, Liang X, Tan Q, Nakajima K, Vacha M. Simultaneous Force and Fluorescence Spectroscopy on Single Chains of Polyfluorene: Effect of Intra-Chain Aggregate Coupling. ACS NANO 2023; 17:8074-8082. [PMID: 37122036 DOI: 10.1021/acsnano.2c09773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Conjugated polymer chains in compact conformations or in films exhibit spectral features that can be attributed to interactions between individual conjugated segments of the chain, including formation of aggregates or excimers. Here, we use atomic force microscopy (AFM) on single chains of the conjugated polymer polyfluorene (PFO) to control the intersegment interactions by mechanically unfolding the chain. Simultaneously with the force spectroscopy we monitor fluorescence from the single PFO chains using a fluorescence microscope. We found that mechanical stretching of the chain causes disappearance of the green emission band. This observation provides evidence that the green emission originates from an intrachain aggregated state on the self-folded chain, which is decoupled by the stretching. In addition, the stretching upon laser irradiation leads to the appearance of additional features in the force spectra, small force peaks in the initial stages of the unfolding. These features are attributed to a combination of excitonic and van der Waals coupling of a ground-state intrachain aggregate.
Collapse
Affiliation(s)
- Tomonori Nakamura
- Department of Materials Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Shun Omagari
- Department of Materials Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Qiwen Tan
- Department of Materials Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
4
|
Ultrafast photoexcitation dynamics behavior of hydrogen-bonded polyfluorenol. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Xue W, Yan H, He Y, Wu L, Zhang X, Wu Y, Xu J, He J, Yan C, Meng H. Identifying the Molecular Origins of Green BN‐TADF Material Degradation and Device Stability via in situ Raman Spectroscopy. Chemistry 2022; 28:e202201006. [DOI: 10.1002/chem.202201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wangjuan Xue
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Hao Yan
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yaowu He
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Lijie Wu
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Xinkang Zhang
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuting Wu
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Jinhao Xu
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Junpeng He
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chaoyi Yan
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Hong Meng
- School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- School of Electronics and Information Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
6
|
Eder T, Kraus D, Höger S, Vogelsang J, Lupton JM. Vibrations Responsible for Luminescence from HJ-Aggregates of Conjugated Polymers Identified by Cryogenic Spectroscopy of Single Nanoparticles. ACS NANO 2022; 16:6382-6393. [PMID: 35394735 DOI: 10.1021/acsnano.2c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A single polymer chain can be thought of as a covalently bound J-aggregate, where the microscopic transition-dipole moments line up to emit in phase. Packing polymer chains into a bulk film can result in the opposite effect, inducing H-type coupling between chains. Cofacial transition-dipole moments oscillate out of phase, canceling each other out, so that the lowest-energy excited state turns dark. H-aggregates of conjugated polymers can, in principle, be coaxed into emitting light by mixing purely electronic and vibronic transitions. However, it is challenging to characterize this electron-phonon coupling experimentally. In a bulk film, many different conformations exist with varying degrees of intrachain J-type and interchain H-type coupling strengths, giving rise to broad and featureless aggregate absorption and emission spectra. Even if single nanoparticles consisting of only a few single chains are grown in a controlled fashion, the luminescence spectra remain broad, owing to the underlying molecular dynamics and structural heterogeneity at room temperature. At cryogenic temperatures, emission from H-type aggregates should be suppressed because, in the absence of thermal energy, internal conversion drives the aggregate to the lowest-energy dark state. At the same time, electronic and vibronic transitions narrow substantially, facilitating the attribution of spectral signatures to distinct vibrational modes. We demonstrate how to distinguish signatures of interchain H-type aggregate species from those of intramolecular J-type coupling. Whereas all dominant vibronic modes revealed in the photoluminescence (PL) and surface-enhanced resonance Raman scattering spectra of a single chromophore within a single polymer chain are identified in the J-type aggregate luminescence spectra, they are not all present at once in the H-type spectra. Universal spectral features are found for the luminescence from strongly HJ-coupled chains, clearly resolving the vibrations responsible for the nonadiabatic excited-state molecular dynamics that enable light emission. We discuss the possible combinations of vibrational modes responsible for H-type aggregate PL and demonstrate that only one, mainly the lowest energy one, of the three dominant vibrational modes contributes to the 0-1 transition, whereas combinations of all three are found in the 0-2 transition. From this analysis, we can distinguish between energy shifts due to either J-type intrachain coupling or H-type interchain interactions, offering a means to directly discriminate between structural and energetic disorder.
Collapse
Affiliation(s)
- Theresa Eder
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | - Daniel Kraus
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| |
Collapse
|
7
|
Yan H, Tseng TW, Omagari S, Hamilton I, Nakamura T, Vacha M, Kim JS. Dynamic Molecular Conformational Change Leading to Energy Transfer in F8-5% BSP Copolymer Revealed by Single-Molecule Spectroscopy. J Chem Phys 2022; 156:074704. [DOI: 10.1063/5.0080406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hao Yan
- Peking University Shenzhen Graduate School School of Advanced Materials, China
| | - Tzu-Wei Tseng
- Tokyo Institute of Technology Department of Materials Science and Engineering, Japan
| | - Shun Omagari
- Tokyo Institute of Technology Department of Materials Science and Engineering, Japan
| | - Iain Hamilton
- King Abdullah University of Science and Technology Physical Sciences and Engineering Division, Saudi Arabia
| | - Tomonori Nakamura
- Tokyo Institute of Technology Department of Materials Science and Engineering, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology - Ookayama Campus, Japan
| | - Ji-Seon Kim
- Physics, Imperial College London, United Kingdom
| |
Collapse
|