1
|
Chakraborty S, Saha R, Saha S. A critical review on graphene and graphene-based derivatives from natural sources emphasizing on CO 2 adsorption potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67633-67663. [PMID: 37779125 DOI: 10.1007/s11356-023-30093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Accelerated release of carbon dioxide (CO2) into the atmosphere has become a critical environmental issue, and therefore, efficient methods for capturing CO2 are in high demand. Graphene and graphene-based derivatives have demonstrated promising potential as adsorbents due to their unique properties. This review aims to provide an overview of the latest research on graphene and its derivatives fabricated from natural sources which have been utilized and may be explored for CO2 adsorption. The necessity of this review lies in the need to explore alternative, sustainable sources of graphene that can contribute to the development of viable environmentally benign CO2 capture technologies. The review will aim to highlight graphene as an excellent CO2 adsorbent and the possible avenues, advantages, and limitations of the processes involved in fabricating graphene and its derivatives sourced from both industrial resources and organic waste-based naturally occurring carbon precursors for CO2 adsorption. This review will also highlight the CO2 adsorption mechanisms focusing on density functional theory (DFT) and molecular dynamics (MD)-based studies over the last decade.
Collapse
Affiliation(s)
- Saswata Chakraborty
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Ranadip Saha
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sudeshna Saha
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
2
|
Sharma P, Thomas S, Nair M, Govind Rajan A. Machine Learnable Language for the Chemical Space of Nanopores Enables Structure-Property Relationships in Nanoporous 2D Materials. J Am Chem Soc 2024; 146:30126-30138. [PMID: 39454029 DOI: 10.1021/jacs.4c08282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The synthesis of nanoporous two-dimensional (2D) materials has revolutionized fields such as membrane separations, DNA sequencing, and osmotic power harvesting. Nanopores in 2D materials significantly modulate their optoelectronic, magnetic, and barrier properties. However, the large number of possible nanopore isomers makes their study onerous, while the lack of machine-learnable representations stymies progress toward structure-property relationships. Here, we develop a language for nanopores in 2D materials, called STring Representation Of Nanopore Geometry (STRONG), that opens the field of 2D nanopore informatics. We show that STRONGs are naturally suited for machine learning via recurrent neural networks, predicting formation energies/times of arbitrary nanopores and transport barriers for CO2, N2, and O2 gas molecules, enabling structure-property relationships. The machine learning models enable the discovery of specific nanopore topologies to separate CO2/N2, O2/CO2, and O2/N2 gas mixtures with high selectivity ratios. We also enable the rapid enumeration of unique configurations of stable, functionalized nanopores in 2D materials via STRONGs, allowing systematic searching of the vast chemical space of nanopores. Using the STRONGs approach, we find that a mix of hydrogen and quinone functionalization results in the most stable functionalized nanopore configuration in graphene, a discovery made feasible by expedited chemical space exploration. Additionally, we also unravel the STRONGs approach as ∼1000 times faster than graph theory algorithms to distinguish nanopore shapes. These advances in the language-based representation of 2D nanopores will accelerate the tailored design of nanoporous materials.
Collapse
Affiliation(s)
- Piyush Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sneha Thomas
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Mahika Nair
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Division of Sciences, School of Interwoven Arts and Sciences, Krea University, Sri City, Andhra Pradesh 517646, India
| | - Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
3
|
Wei J, Hong H, Wang X, Lei X, Ye M, Liu Z. Nanopore-based sensors for DNA sequencing: a review. NANOSCALE 2024; 16:18732-18766. [PMID: 39295590 DOI: 10.1039/d4nr01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Nanopore sensors, owing to their distinctive structural properties, can be used to detect biomolecular translocation events. These sensors operate by monitoring variations in electric current amplitude and duration, thereby enabling the calibration and distinction of various biomolecules. As a result, nanopores emerge as a potentially powerful tool in the field of deoxyribonucleic acid (DNA) sequencing. However, the interplay between testing bandwidth and noise often leads to the loss of part of the critical translocation signals, presenting a substantial challenge for the precise measurement of biomolecules. In this context, innovative detection mechanisms have been developed, including optical detection, tunneling current detection, and nanopore field-effect transistor (FET) detection. These novel detection methods are based on but beyond traditional nanopore techniques and each of them has unique advantages. Notably, nanopore FET sensors stand out for their high signal-to-noise ratio (SNR) and high bandwidth measurement capabilities, overcoming the limitations typically associated with traditional solid-state nanopore (SSN) technologies and thus paving the way for new avenues to biomolecule detection. This review begins by elucidating the fundamental detection principles, development history, applications, and fabrication methods for traditional SSNs. It then introduces three novel detection mechanisms, with a particular emphasis on nanopore FET detection. Finally, a comprehensive analysis of the advantages and challenges associated with both SSNs and nanopore FET sensors is performed, and then insights into the future development trajectories for nanopore FET sensors in DNA sequencing are provided. This review has two main purposes: firstly, to provide researchers with a preliminary understanding of advancements in the nanopore field, and secondly, to offer a comprehensive analysis of the fabrication techniques, transverse current detection principles, challenges, and future development trends in the field of nanopore FET sensors. This comprehensive analysis aims to help give researchers in-depth insights into cutting-edge advancements in the field of nanopore FET sensors.
Collapse
Affiliation(s)
- Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Hao Hong
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Xing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Xin Lei
- School of Chemistry, Beihang University, Beijing, 100084, China
| | - Minjie Ye
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Liu M, Wang L, Yu G. Recent Research Progress of Porous Graphene and Applications in Molecular Sieve, Sensor, and Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401767. [PMID: 38847563 DOI: 10.1002/smll.202401767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhou Z, Zhao K, Chi HY, Shen Y, Song S, Hsu KJ, Chevalier M, Shi W, Agrawal KV. Electrochemical-repaired porous graphene membranes for precise ion-ion separation. Nat Commun 2024; 15:4006. [PMID: 38740849 DOI: 10.1038/s41467-024-48419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.
Collapse
Affiliation(s)
- Zongyao Zhou
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Kangning Zhao
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Yueqing Shen
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Shuqing Song
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Kuang-Jung Hsu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Mojtaba Chevalier
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300387, P. R. China
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland.
| |
Collapse
|
6
|
Goethem CV, Shen Y, Chi HY, Mensi M, Zhao K, Nijmeijer A, Just PE, Agrawal KV. Advancing Molecular Sieving via Å-Scale Pore Tuning in Bottom-Up Graphene Synthesis. ACS NANO 2024. [PMID: 38324377 PMCID: PMC10883125 DOI: 10.1021/acsnano.3c11885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.
Collapse
Affiliation(s)
- Cédric Van Goethem
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Yueqing Shen
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Heng-Yu Chi
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Mounir Mensi
- X-ray Diffraction and Surface Analytics Platform (XRD-SAP), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Kangning Zhao
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Arian Nijmeijer
- Shell Global Solutions International B.V., P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
- Inorganic Membranes, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Paul-Emmanuel Just
- Shell Global Solutions International B.V., P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
| | - Kumar Varoon Agrawal
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| |
Collapse
|
7
|
Zhao K, Lee WC, Rezaei M, Chi HY, Li S, Villalobos LF, Hsu KJ, Zhang Y, Wang FC, Agrawal KV. Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion-Ion Separation. ACS NANO 2024. [PMID: 38320296 PMCID: PMC10883049 DOI: 10.1021/acsnano.3c11068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Zero-dimensional pores spanning only a few angstroms in size in two-dimensional materials such as graphene are some of the most promising systems for designing ion-ion selective membranes. However, the key challenge in the field is that so far a crack-free macroscopic graphene membrane for ion-ion separation has not been realized. Further, methods to tune the pores in the Å-regime to achieve a large ion-ion selectivity from the graphene pore have not been realized. Herein, we report an Å-scale pore size tuning tool for single layer graphene, which incorporates a high density of ion-ion selective pores between 3.5 and 8.5 Å while minimizing the nonselective pores above 10 Å. These pores impose a strong confinement for ions, which results in extremely high selectivity from centimeter-scale porous graphene between monovalent and bivalent ions and near complete blockage of ions with the hydration diameter, DH, greater than 9.0 Å. The ion diffusion study reveals the presence of an energy barrier corresponding to partial dehydration of ions with the barrier increasing with DH. We observe a reversal of K+/Li+ selectivity at elevated temperature and attribute this to the relative size of the dehydrated ions. These results underscore the promise of porous two-dimensional materials for solute-solute separation when Å-scale pores can be incorporated in a precise manner.
Collapse
Affiliation(s)
- Kangning Zhao
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Wan-Chi Lee
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Mojtaba Rezaei
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Shaoxian Li
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Kuang-Jung Hsu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Yuyang Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Feng-Chao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| |
Collapse
|
8
|
Vahdat M, Li S, Huang S, Bondaz L, Bonnet N, Hsu KJ, Marzari N, Agrawal KV. Mechanistic Insights on Functionalization of Graphene with Ozone. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:22015-22022. [PMID: 38024196 PMCID: PMC10658624 DOI: 10.1021/acs.jpcc.3c03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
The exposure of graphene to O3 results in functionalization of its lattice with epoxy, even at room temperature. This reaction is of fundamental interest for precise lattice patterning, however, is not well understood. Herein, using van der Waals density functional theory (vdW-DFT) incorporating spin-polarized calculations, we find that O3 strongly physisorbs on graphene with a binding energy of -0.46 eV. It configures in a tilted position with the two terminal O atoms centered above the neighboring graphene honeycombs. A dissociative chemisorption follows by surpassing an energy barrier of 0.75 eV and grafting an epoxy group on graphene reducing the energy of the system by 0.14 eV from the physisorbed state. Subsequent O3 chemisorption is preferred on the same honeycomb, yielding two epoxy groups separated by a single C-C bridge. We show that capturing the onset of spin in oxygen during chemisorption is crucial. We verify this finding with experiments where an exponential increase in the density of epoxy groups as a function of reaction temperature yields an energy barrier of 0.66 eV, in agreement with the DFT prediction. These insights will help efforts to obtain precise patterning of the graphene lattice.
Collapse
Affiliation(s)
- Mohammad
Tohidi Vahdat
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
- Theory
and Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), EPFL, Lausanne CH-1015, Switzerland
| | - Shaoxian Li
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Shiqi Huang
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Luc Bondaz
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Nicéphore Bonnet
- Theory
and Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), EPFL, Lausanne CH-1015, Switzerland
| | - Kuang-Jung Hsu
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Nicola Marzari
- Theory
and Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), EPFL, Lausanne CH-1015, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| |
Collapse
|
9
|
Wang J, Cheng C, Zheng X, Idrobo JC, Lu AY, Park JH, Shin BG, Jung SJ, Zhang T, Wang H, Gao G, Shin B, Jin X, Ju L, Han Y, Li LJ, Karnik R, Kong J. Cascaded compression of size distribution of nanopores in monolayer graphene. Nature 2023; 623:956-963. [PMID: 38030784 DOI: 10.1038/s41586-023-06689-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
Monolayer graphene with nanometre-scale pores, atomically thin thickness and remarkable mechanical properties provides wide-ranging opportunities for applications in ion and molecular separations1, energy storage2 and electronics3. Because the performance of these applications relies heavily on the size of the nanopores, it is desirable to design and engineer with precision a suitable nanopore size with narrow size distributions. However, conventional top-down processes often yield log-normal distributions with long tails, particularly at the sub-nanometre scale4. Moreover, the size distribution and density of the nanopores are often intrinsically intercorrelated, leading to a trade-off between the two that substantially limits their applications5-9. Here we report a cascaded compression approach to narrowing the size distribution of nanopores with left skewness and ultrasmall tail deviation, while keeping the density of nanopores increasing at each compression cycle. The formation of nanopores is split into many small steps, in each of which the size distribution of all the existing nanopores is compressed by a combination of shrinkage and expansion and, at the same time as expansion, a new batch of nanopores is created, leading to increased nanopore density by each cycle. As a result, high-density nanopores in monolayer graphene with a left-skewed, short-tail size distribution are obtained that show ultrafast and ångström-size-tunable selective transport of ions and molecules, breaking the limitation of the conventional log-normal size distribution9,10. This method allows for independent control of several metrics of the generated nanopores, including the density, mean diameter, standard deviation and skewness of the size distribution, which will lead to the next leap in nanotechnology.
Collapse
Affiliation(s)
- Jiangtao Wang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Chi Cheng
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales, Australia.
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Juan Carlos Idrobo
- Materials Science and Engineering Department, University of Washington, Seattle, WA, USA
| | - Ang-Yu Lu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ji-Hoon Park
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bong Gyu Shin
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Soon Jung Jung
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haozhe Wang
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Guanhui Gao
- Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA
| | - Bongki Shin
- Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA
| | - Xiang Jin
- Department of Physics, Tsinghua University, Beijing, China
| | - Long Ju
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yimo Han
- Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA
| | - Lain-Jong Li
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Bondaz L, Ronghe A, Li S, Čerņevičs K, Hao J, Yazyev OV, Ayappa KG, Agrawal KV. Selective Photonic Gasification of Strained Oxygen Clusters on Graphene for Tuning Pore Size in the Å Regime. JACS AU 2023; 3:2844-2854. [PMID: 37885574 PMCID: PMC10598578 DOI: 10.1021/jacsau.3c00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Controlling the size of single-digit pores, such as those in graphene, with an Å resolution has been challenging due to the limited understanding of pore evolution at the atomic scale. The controlled oxidation of graphene has led to Å-scale pores; however, obtaining a fine control over pore evolution from the pore precursor (i.e., the oxygen cluster) is very attractive. Herein, we introduce a novel "control knob" for gasifying clusters to form pores. We show that the cluster evolves into a core/shell structure composed of an epoxy group surrounding an ether core in a bid to reduce the lattice strain at the cluster core. We then selectively gasified the strained core by exposing it to 3.2 eV of light at room temperature. This allowed for pore formation with improved control compared to thermal gasification. This is because, for the latter, cluster-cluster coalescence via thermally promoted epoxy diffusion cannot be ruled out. Using the oxidation temperature as a control knob, we were able to systematically increase the pore density while maintaining a narrow size distribution. This allowed us to increase H2 permeance as well as H2 selectivity. We further show that these pores could differentiate CH4 from N2, which is considered to be a challenging separation. Dedicated molecular dynamics simulations and potential of mean force calculations revealed that the free energy barrier for CH4 translocation through the pores was lower than that for N2. Overall, this study will inspire research on the controlled manipulation of clusters for improved precision in incorporating Å-scale pores in graphene.
Collapse
Affiliation(s)
- Luc Bondaz
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Anshaj Ronghe
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Shaoxian Li
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | | | - Jian Hao
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Oleg V. Yazyev
- Institute
of Physics, EPFL, Lausanne CH-1015, Switzerland
| | - K. Ganapathy Ayappa
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| |
Collapse
|
11
|
Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Villalobos LF, Babu DJ, Hsu KJ, Van Goethem C, Agrawal KV. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:1073-1087. [PMID: 36338295 PMCID: PMC9623591 DOI: 10.1021/accountsmr.2c00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Gas separation is one of the most important industrial processes and is poised to take a larger role in the transition to renewable energy, e.g., carbon capture and hydrogen purification. Conventional gas separation processes involving cryogenic distillation, solvents, and sorbents are energy intensive, and as a result, the energy footprint of gas separations in the chemical industry is extraordinarily high. This has motivated fundamental research toward the development of novel materials for high-performance membranes to improve the energy efficiency of gas separation. These novel materials are expected to overcome the intrinsic limitations of the conventional membrane material, i.e., polymers, where a longstanding trade-off between the separation selectivity and the permeance has motivated research into nanoporous materials as the selective layer for the membranes. In this context, atom-thick materials such as nanoporous single-layer graphene constitute the ultimate limit for the selective layer. Gas transport from atom-thick nanopores is extremely fast, dependent primarily on the energy barrier that the gas molecule experiences in translocating the nanopore. Consequently, the difference in the energy barriers for two gas molecules determines the gas pair selectivity. In this Account, we summarize the development in the field of nanoporous single-layer graphene membranes for gas separation. We start by discussing the mechanism for gas transport across atom-thick nanopores, which then yields the crucial design elements needed to achieve high-performance membranes: (i) nanopores with an adequate electron-density gap to sieve the desired gas component (e.g., smaller than 0.289, 0.33, 0.346, 0.362, and 0.38 nm for H2, CO2, O2, N2, and CH4, respectively), (ii) narrow pore size distribution to limit the nonselective effusive transport from the tail end of the distribution, and (iii) high density of selective pores. We discuss and compare the state-of-the-art bottom-up and top-down routes for the synthesis of nanoporous graphene films. Mechanistic insights and parameters controlling the size, distribution, and density of nanopores are discussed. Fundamental insights are provided into the reaction of ozone with graphene, which has been successfully used by our group to develop membranes with record-high carbon capture performance. Postsynthetic modifications, which allow the tuning of the transport by (i) tailoring the relative contributions of adsorbed-phase and gas-phase transport, (ii) competitive adsorption, and (iii) molecular cutoff adjustment, are discussed. Finally, we discuss practical aspects that are crucial in successfully preparing practical membranes using atom-thick materials as the selective layer, allowing the eventual scale-up of these membranes. Crack- and tear-free preparation of membranes is discussed using the approach of mechanical reinforcement of graphene with nanoporous carbon and polymers, which led to the first reports of millimeter- and centimeter-scale gas-sieving membranes in the year 2018 and 2021, respectively. We conclude with insights and perspectives highlighting the key scientific and technological gaps that must be addressed in the future research.
Collapse
Affiliation(s)
- Luis Francisco Villalobos
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne, Sion 1950, Switzerland
| | - Deepu J. Babu
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne, Sion 1950, Switzerland
- Department
of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502 284, India
| | - Kuang-Jung Hsu
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne, Sion 1950, Switzerland
| | - Cédric Van Goethem
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne, Sion 1950, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne, Sion 1950, Switzerland
| |
Collapse
|
13
|
Yuan Z, He G, Li SX, Misra RP, Strano MS, Blankschtein D. Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201472. [PMID: 35389537 DOI: 10.1002/adma.202201472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high-performance gas separations due to their atomic thickness, large-scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas-sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas-separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas-separation applications of nanoporous atomically thin membranes.
Collapse
Affiliation(s)
- Zhe Yuan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Guangwei He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sylvia Xin Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Li S, Vahdat MT, Huang S, Hsu KJ, Rezaei M, Mensi M, Marzari N, Agrawal KV. Structure Evolution of Graphitic Surface upon Oxidation: Insights by Scanning Tunneling Microscopy. JACS AU 2022; 2:723-730. [PMID: 35373205 PMCID: PMC8970004 DOI: 10.1021/jacsau.1c00570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 05/31/2023]
Abstract
Oxidation of graphitic materials has been studied for more than a century to synthesize materials such as graphene oxide, nanoporous graphene, and to cut or unzip carbon nanotubes. However, the understanding of the early stages of oxidation is limited to theoretical studies, and experimental validation has been elusive. This is due to (i) challenging sample preparation for characterization because of the presence of highly mobile and reactive epoxy groups formed during oxidation, and (ii) gasification of the functional groups during imaging with atomic resolution, e.g., by transmission electron microscopy. Herein, we utilize a low-temperature scanning tunneling microscope (LT-STM) operating at 4 K to solve the structure of epoxy clusters form upon oxidation. Three distinct nanostructures corresponding to three stages of evolution of vacancy defects are found by quantitatively verifying the experimental data by the van der Waals density functional theory. The smallest cluster is a cyclic epoxy trimer. Their observation validates the theoretical prediction that epoxy trimers minimize the energy in the cyclic structure. The trimers grow into honeycomb superstructures to form larger clusters (1-3 nm). Vacancy defects evolve only in the larger clusters (2-3 nm) in the middle of the cluster, highlighting the role of lattice strain in the generation of vacancies. Semiquinone groups are also present and are assigned at the carbon edge in the vacancy defects. Upon heating to 800 °C, we observe cluster-free vacancy defects resulting from the loss of the entire epoxy population, indicating a reversible functionalization of epoxy groups.
Collapse
Affiliation(s)
- Shaoxian Li
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion 1950, Switzerland
| | - Mohammad Tohidi Vahdat
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion 1950, Switzerland
- Theory
and Simulation of Materials (THEOS), National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Shiqi Huang
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion 1950, Switzerland
| | - Kuang-Jung Hsu
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion 1950, Switzerland
| | - Mojtaba Rezaei
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion 1950, Switzerland
| | - Mounir Mensi
- Institut
des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Sion 1950, Switzerland
| | - Nicola Marzari
- Theory
and Simulation of Materials (THEOS), National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion 1950, Switzerland
| |
Collapse
|
15
|
Micari M, Agrawal KV. Oxygen enrichment of air: Performance guidelines for membranes based on techno-economic assessment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|