1
|
Yang J, Sun Y, Shi H, Zou H, Zhang Y, Tian X, Yang H. Small Ligand-Involved Pickering Droplet Interface Controls Reaction Selectivity of Metal Catalysts. J Am Chem Soc 2025; 147:5984-5995. [PMID: 39913329 DOI: 10.1021/jacs.4c16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Developing efficient methods to improve catalytic selectivity, particularly without sacrificing catalytic activity, is of paramount significance for chemical synthesis. In this work, we report a small ligand-involved Pickering droplet interface as a brand-new strategy to effectively regulate reaction selectivity of metal catalysts. It was found that small ligands such as polar arenes could engineer the surface structure of Pt catalysts that were assembled at Pickering droplet interfaces. Due to the strong hydrogen-bonding interactions with water, the polar arenes preferentially adsorbed with the water adlayer that covered Pt surfaces, forming water-mediated metal-organic interfaces on the Pickering emulsion droplets. Such an interface system displayed a significantly enhanced p-vinylaniline selectivity from 8.7 to 94.2% with an unreduced conversion in p-nitrostyrene hydrogenation. The selectivity was found to follow a negatively linear correlation with the bond length of the interfacial hydrogen bonds. Theoretical calculations revealed that the small arene ligands could closely array at the interface, which modulated the adsorption patterns of reactant/product molecules to prevent the C═C group from approaching Pt surfaces without suppressing their accessibility toward reactant molecules. Such a remarkable interfacial steric effect contributed to the efficient control of the hydrogenation selectivity. Our work provides an innovative strategy to modulate the surface structure of metal catalysts, opening a new venue to tune catalytic selectivity.
Collapse
Affiliation(s)
- Jie Yang
- Shanxi Key Laboratory for the Green Catalysis Synthesis of Coal-based Value-added Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yue Sun
- Shanxi Key Laboratory for the Green Catalysis Synthesis of Coal-based Value-added Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hu Shi
- Shanxi Key Laboratory for the Green Catalysis Synthesis of Coal-based Value-added Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Houbing Zou
- Shanxi Key Laboratory for the Green Catalysis Synthesis of Coal-based Value-added Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Yabin Zhang
- School of Environment and Resources, Shanxi University, Taiyuan 030006, China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hengquan Yang
- Shanxi Key Laboratory for the Green Catalysis Synthesis of Coal-based Value-added Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Glikman D, Wyszynski L, Lindfeld V, Hochstädt S, Hansen MR, Neugebauer J, Schönhoff M, Braunschweig B. Charge Regulation at the Nanoscale as Evidenced from Light-Responsive Nanoemulsions. J Am Chem Soc 2024; 146:8362-8371. [PMID: 38483326 DOI: 10.1021/jacs.3c14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Emulsions are indispensable in everyday life, and the demand for emulsions' diversity and control of properties is therefore substantial. As emulsions possess a high internal surface area, an understanding of the oil/water (o/w) interfaces at the molecular level is fundamental but often impaired by experimental limitations to probe emulsion interfaces in situ. Here, we have used light-responsive surfactants (butyl-AAP) that can photoisomerize between E and Z isomers by visible and UV light irradiation to tune the emulsion interfaces. This causes massive changes in the interface tension at the extended o/w interfaces in macroemulsions and a drastic shift in the surfactants' critical micelle concentration, which we show can be used to control both the stability and phase separation. Strikingly different from macroemulsions are nanoemulsions (RH ∼90 nm) as these are not susceptible to E/Z photoisomerization of the surfactants in terms of changes in their droplet size or ζ-potential. However, in situ second-harmonic scattering and pulsed-field gradient nuclear magnetic resonance (NMR) experiments show dramatic and reversible changes in the surface excess of surfactants at the nanoscopic interfaces. The apparent differences in ζ-potentials and surface excess provide evidence for a fixed charge to particle size ratio and the need for counterion condensation to renormalize the particle charge to a critical charge, which is markedly different compared to the behavior of very large particles in macroemulsions. Thus, our findings may have broader implications as the electrostatic stabilization of nanoparticles requires much lower surfactant concentrations, allowing for a more sustainable use of surfactants.
Collapse
Affiliation(s)
- Dana Glikman
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Leonard Wyszynski
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Valentin Lindfeld
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Sebastian Hochstädt
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Johannes Neugebauer
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
3
|
Sara RJ, Coers D, Behrman C, Bobay J, Subir M. Molecular Adsorption and Physicochemical Properties at Liquid/Liquid Nanoemulsion Soft Interfaces: Effect of Charge and Hydrophobicity. J Phys Chem B 2024. [PMID: 38498699 DOI: 10.1021/acs.jpcb.3c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Contrary to the popular adage, "Oil and water do not mix", evidence of mixtures comprising the two "immiscible" liquids is universal. In the presence of an emulsifier, oil and water mix to form a colloidal suspension known as emulsion. Their utility in many areas such as food chemistry, biomedical health sectors, catalysis, and the petroleum industry is well recognized. While their application in our society is pervasive, tantalizing fundamental questions regarding the chemistry that takes place at the oil/water soft interface still linger. For instance, do organic compounds show proclivity for this molecularly thin boundary and, if so, what forces, hydrophobic or pure electrostatic among others, drive the molecular interactions? The focus of this Article is on molecular adsorption at the interface of oil-in-water (O/W) nanoemulsion (NE) droplets. The effect of the interfacial surfactant charge (positive, negative, zwitterionic, and neutral) on the affinity of aromatic organic compounds on the O/W NEs has been studied. Using a second harmonic generation (SHG), a nonlinear light scattering technique, we have explored the adsorption equilibrium of charged and neutral organic dyes. By variation of the surfactant functional group and thereby the interfacial charge properties, the source of the adsorption interaction, if any, has been deduced. The population of surfactants containing a charged functional group at the O/W interface is found to be sparse, yet adsorption at some of these interfaces has been observed. A purely electrostatic Coulomb interaction plays a key role, but the presence of a charged interface does not necessitate molecular adsorption. Hydrophobic interactions are not a major driving force of adsorption for the SHG dyes studied. However, a possible pi-interaction is likely in explaining the accumulation of neutral aromatic compounds at the O/W NE interface. These intricate adsorption features are discussed in the context of NE interfacial charge properties and their stability upon molecular adsorption.
Collapse
Affiliation(s)
- Rubyat J Sara
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Derek Coers
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Charles Behrman
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Jaron Bobay
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Mahamud Subir
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
4
|
Hilburg SL, Jin T, Alexander-Katz A. Dynamic transformation of bio-inspired single-chain nanoparticles at interfaces. J Chem Phys 2023; 159:114902. [PMID: 37712796 DOI: 10.1063/5.0164475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The interfacial behavior of macromolecules dictates their intermolecular interactions, which can impact the processing and application of polymers for pharmaceutical and synthetic use. Using molecular dynamics simulations, we observe the evolution of a random heteropolymer in the presence of liquid-liquid interfaces. The system of interest forms single-chain nanoparticles through hydrophobic collapse in water, lacking permanent crosslinks and making their morphology mutable in new environments. Complex amphiphilic polymers are shown to be capable of stabilizing high interfacial tension water-hexane interfaces, often unfolding to maximize surface coverage. Despite drastic changes to polymer conformation, monomer presence in the water phase is generally maintained and most changes are due to increased hydrophobic solvent exposure toward the oil phase. These results are then compared to the behavior at the water-graphene interface, where the macromolecules adsorb but do not remodel. The polymer's behavior is shown to depend significantly on both its own amphiphilic character and the deformability of the interface.
Collapse
Affiliation(s)
- Shayna L Hilburg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tianyi Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
Carpenter AP, Golbek TW. "Nonlinear" pursuit of understanding pollutant accumulation and chemistry at environmental and biological interfaces. Biointerphases 2023; 18:058501. [PMID: 37728303 DOI: 10.1116/6.0003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Over the past few decades, the public recognition of the prevalence of certain classes of pollutants, such as perfluoroalkyl substances and nanoplastics, within the environment, has sparked growing concerns over their potential impact on environmental and human health. Within both environmental and biological systems, the adsorption and structural organization of pollutants at aqueous interfaces can greatly impact the chemical reactivity and transformation. Experimentally probing chemical behavior at interfaces can often pose a problem due to bulk solvated molecules convoluting molecular signatures from interfacial molecules. To solve this problem, there exist interface-specific nonlinear spectroscopy techniques that can directly probe both macroscopic planar interfaces and nanoplastic interfaces in aqueous environments. These techniques can provide essential information such as chemical adsorption, structure, and reactivity at interfaces. In this perspective, these techniques are presented with obvious advantages for studying the chemical properties of pollutants adsorbed to environmental and biological interfaces.
Collapse
Affiliation(s)
- Andrew P Carpenter
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331
| | | |
Collapse
|
6
|
Weiand E, Rodriguez-Ropero F, Roiter Y, Koenig PH, Angioletti-Uberti S, Dini D, Ewen JP. Effects of surfactant adsorption on the wettability and friction of biomimetic surfaces. Phys Chem Chem Phys 2023; 25:21916-21934. [PMID: 37581271 DOI: 10.1039/d3cp02546b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The properties of solid-liquid interfaces can be markedly altered by surfactant adsorption. Here, we use molecular dynamics (MD) simulations to study the adsorption of ionic surfactants at the interface between water and heterogeneous solid surfaces with randomly arranged hydrophilic and hydrophobic regions, which mimic the surface properties of human hair. We use the coarse-grained MARTINI model to describe both the hair surfaces and surfactant solutions. We consider negatively-charged virgin and bleached hair surface models with different grafting densities of neutral octadecyl and anionic sulfonate groups. The adsorption of cationic cetrimonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) surfactants from water are studied above the critical micelle concentration. The simulated adsorption isotherms suggest that cationic surfactants adsorb to the surfaces via a two-stage process, initially forming monolayers and then bilayers at high concentrations, which is consistent with previous experiments. Anionic surfactants weakly adsorb via hydrophobic interactions, forming only monolayers on both virgin and medium bleached hair surfaces. We also conduct non-equilibrium molecular dynamics simulations, which show that applying cationic surfactant solutions to bleached hair successfully restores the low friction seen with virgin hair. Friction is controlled by the combined surface coverage of the grafted lipids and the adsorbed CTAB molecules. Treated surfaces containing monolayers and bilayers both show similar friction, since the latter are easily removed by compression and shear. Further wetting MD simulations show that bleached hair treated with CTAB increases the hydrophobicity to similar levels seen for virgin hair. Treated surfaces containing CTAB monolayers with the tailgroups pointing predominantly away from the surface are more hydrophobic than bilayers due to the electrostatic interactions between water molecules and the exposed cationic headgroups.
Collapse
Affiliation(s)
- Erik Weiand
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Francisco Rodriguez-Ropero
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Mason, 45040 Ohio, USA
| | - Yuri Roiter
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Mason, 45040 Ohio, USA
| | - Peter H Koenig
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Mason, 45040 Ohio, USA
| | - Stefano Angioletti-Uberti
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Department of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - James P Ewen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| |
Collapse
|
7
|
Zhang Y, Ye Z, Li C, Chen Q, Aljuhani W, Huang Y, Xu X, Wu C, Bell SEJ, Xu Y. General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis. Nat Commun 2023; 14:1392. [PMID: 36914627 PMCID: PMC10011407 DOI: 10.1038/s41467-023-37001-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Pickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle constituents. This approach is inconvenient and potentially a dead-end for many applications since the adsorbed modifiers prevent interactions between the functional nanosurface and its surroundings. Here, we demonstrate a general modifier-free approach to construct Pickering emulsions by using a combination of stabilizer particles, which stabilize the emulsion droplet, and a second population of unmodified functional particles that sit alongside the stabilizers at the interface. Freeing Pickering emulsions from chemical modifiers unlocks their potential across a range of applications including plasmonic sensing and interfacial catalysis that have previously been challenging to achieve. More broadly, this strategy provides an approach to the development of surface-accessible nanomaterials with enhanced and/or additional properties from a wide range of nano-building blocks including organic nanocrystals, carbonaceous materials, metals and oxides.
Collapse
Affiliation(s)
- Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Qinglu Chen
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Wafaa Aljuhani
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Yiming Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK.
| |
Collapse
|
8
|
Zou H, Shi H, Hao S, Hao Y, Yang J, Tian X, Yang H. Boosting Catalytic Selectivity through a Precise Spatial Control of Catalysts at Pickering Droplet Interfaces. J Am Chem Soc 2023; 145:2511-2522. [PMID: 36652392 DOI: 10.1021/jacs.2c12120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exploration of new methodologies to tune catalytic selectivity is a long-sought goal in catalytic community. In this work, oil-water interfaces of Pickering emulsions are developed to effectively regulate catalytic selectivity of hydrogenation reactions, which was achieved via a precise control of the spatial distribution of metal nanoparticles at the droplet interfaces. It was found that Pd nanoparticles located in the inner interfacial layer of Pickering droplets exhibited a significantly enhanced selectivity for p-chloroaniline (up to 99.6%) in the hydrogenation of p-chloronitrobenzene in comparison to those in the outer interfacial layer (63.6%) in pure water (68.5%) or in pure organic solvents (46.8%). Experimental and theoretical investigations indicated that such a remarkable interfacial microregion-dependent catalytic selectivity was attributed to the microenvironments of the coexistence of water and organic solvent at the droplet interfaces, which could provide unique interfacial hydrogen-bonding interactions and solvation effects so as to alter the adsorption patterns of p-chloronitrobenzene and p-chloroaniline on the Pd nanoparticles, thereby avoiding the unwanted contact of C-Cl bonds with the metal surfaces. Our strategy of precise spatial control of catalysts at liquid-liquid interfaces and the unprecedented interfacial effect reported here not only provide new insights into the liquid-liquid interfacial reactions but also open an avenue to boost catalytic selectivity.
Collapse
Affiliation(s)
- Houbing Zou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shijiao Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yajuan Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jie Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|