1
|
Fuentes-Azcatl R. Dielectric Properties of Water with a Low Quantity of NaCl inside Charged Nanoslits. J Phys Chem B 2025; 129:1827-1835. [PMID: 39902587 PMCID: PMC11831677 DOI: 10.1021/acs.jpcb.4c06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
A 0.5 molal solution of NaCl in water confined within charged graphene nanoslits represents an intriguing system for molecular dynamics simulation, functioning as a model for a nanocapacitor. This charged configuration not only holds practical significance for the advancement of nanoscale capacitors but also offers valuable insights into how the charged walls and applied electric field influence the structure of water, the movement of ions within the solution, and how these alterations in water impact the overall fluid behavior. The behavior of the solution under nanoconfinement diverges markedly from that observed in bulk conditions, exhibiting distinct structural, dynamic, and dielectric properties. The charging of the graphene nanoslits generates an electric field within the nanopore, which plays a critical role in modulating molecular interactions. Key properties, including the static dielectric constant, polarization, and density of the 0.5 molal solution, are systematically examined through the molecular structure of the confined system. The models employed in this study include the flexible FAB/ϵ model of water, which effectively reproduces various experimental properties of water under different pressure and temperature conditions. Additionally, the NaCl/ϵ model is used, which also captures a range of experimental characteristics associated with sodium chloride solutions. Together, these models facilitate a comprehensive understanding of the complex behavior of water and ions under the influence of nanoconfinement and electric fields, providing insights that are essential for both fundamental science and practical applications in nanotechnology.
Collapse
Affiliation(s)
- Raúl Fuentes-Azcatl
- Instituto de Física
“Luis Rivera Terrazas’, Benemérita
Universidad Autńoma de Puebla, Apdo. Postal J-48, Puebla 72570, Mexico
| |
Collapse
|
2
|
Zhao W, Yin P, Wang Z, Huang J, Fu Y, Hu W. Recent advances in regulation methods for selective separation and precise control of two-dimensional (2D) lamellar membranes. Adv Colloid Interface Sci 2024; 334:103330. [PMID: 39486346 DOI: 10.1016/j.cis.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Selective separation and precise control of the structure and surface characterization for two-dimensional (2D) membranes is the key technology that needs to be revealed for further development of the material in practical application. Current researches focus on the cross-linking and modification of single nanosheet to improve and manipulate the performance of 2D lamellar membranes. In this paper, the selectivity principles such as size exclusion, charge properties, and surface chemical affinity in the separation process of 2D membranes were comprehensively and systematically reviewed, as well as the preparation of hybrid membranes combining the advantages of various raw materials. We also analyzed the practical application of the separation principles in relevant researches and discussed the development directions of 2D membranes. These inductions have certain summary and guiding significance for the selective regulation and goal-oriented design of 2D membranes.
Collapse
Affiliation(s)
- Weixuan Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ping Yin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zulin Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Junnan Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Wenjihao Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Murakami H, Kanahara Y, Sasaki K. Freezing of Water Solvation Dynamics in Nanoconfinement by Reverse Micelles at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13082-13091. [PMID: 38867455 DOI: 10.1021/acs.langmuir.4c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Much attention has recently been paid to anomalously low dielectric constants of nanoconfined water between two slabs at room temperature (Fumagalli et al. Science, 2018, 360, 1339). These low values imply that the dipole rotation of the interfacial water on the slab is completely suppressed. Such freezing has so far been observed for water confined between solids. In contrast, it remains unclear whether this holds for water in soft confinement, which is omnipresent naturally and artificially. Here, we address this question using encapsulated reverse micelles with a dye molecule, allowing us to study water sandwiched between the surfactant and dye molecules in solution. Moreover, we examine the solvation related to the dielectric property of water, which is reorientational motion in the hydration layer of the dye molecule, by persistent hole-burning spectroscopy. We first show that the dye molecule is surrounded by water without contact with the surfactant and that the dye molecule has two or three hydration layers on average. We next demonstrate that the solvation dynamics is frozen below the water droplet size of ∼4 nm, whereas they become liquid-like when the RM size is further increased. The average gap distance (∼1.5 nm) for freezing the solvation agrees with the gap distance with no rotational water motions between slabs. Our findings may have biological relevance, providing a new aspect for understanding biological function in cells.
Collapse
Affiliation(s)
- Hiroshi Murakami
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Kyoto 619-0215, Japan
| | - Yuko Kanahara
- Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Kaito Sasaki
- Department of Physics, School of Science, and Micro/Nano Technology Center, Tokai University, Kanagawa 259-1292, Japan
| |
Collapse
|
4
|
Morais AF, Radhakrishnan S, Arbiv G, Dom D, Duerinckx K, Chandran CV, Martens JA, Breynaert E. Noncontact In Situ Multidiagnostic NMR/Dielectric Spectroscopy. Anal Chem 2024; 96:5071-5077. [PMID: 38513052 DOI: 10.1021/acs.analchem.3c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Introduction of a dielectric material in a nuclear magnetic resonance (NMR) probe head modifies the frequency response of the probe circuit, a phenomenon revealed by detuning of the probe. For NMR spectroscopy, this detuning is corrected for by tuning and matching the probe head prior to the NMR measurement. The magnitude of the probe detuning, "the dielectric shift", provides direct access to the dielectric properties of the sample, enabling NMR spectrometers to simultaneously perform both dielectric and NMR spectroscopy. By measuring sample dielectric permittivity as a function of frequency, dielectric permittivity spectroscopy can be performed using the new methodology. As a proof of concept, this was evaluated on methanol, ethanol, 1-propanol, 1-pentanol, and 1-octanol using a commercial cross-polarization magic angle spinning (CPMAS) NMR probe head. The results accurately match the literature data collected by standard dielectric spectroscopy techniques. Subsequently, the method was also applied to investigate the solvent-surface interactions of water confined in the micropores of an MFI-type, hydrophilic zeolite with a Si/Al ratio of 11.5. In the micropores, water adsorbs to Bro̷nsted acid sites and defect sites, resulting in a drastically decreased dielectric permittivity of the nanoconfined water. Theoretical background for the new methodology is provided using an effective electric circuit model of a CPMAS probe head with a solenoid coil, describing the detuning resulting from the insertion of dielectric samples in the probe head.
Collapse
Affiliation(s)
- Alysson F Morais
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Gavriel Arbiv
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- Center for Molecular Water Science (CMWS), Notkestraße 85, 22607 Hamburg, Germany
| | - Dirk Dom
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Karel Duerinckx
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - C Vinod Chandran
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Johan A Martens
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- Center for Molecular Water Science (CMWS), Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Dufils T, Schran C, Chen J, Geim AK, Fumagalli L, Michaelides A. Origin of dielectric polarization suppression in confined water from first principles. Chem Sci 2024; 15:516-527. [PMID: 38179530 PMCID: PMC10763014 DOI: 10.1039/d3sc04740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
It has long been known that the dielectric constant of confined water should be different from that in bulk. Recent experiments have shown that it is vanishingly small, however the origin of the phenomenon remains unclear. Here we used ab initio molecular dynamics simulations (AIMD) and AIMD-trained machine-learning potentials to understand water's structure and electronic properties underpinning this effect. For the graphene and hexagonal boron-nitride substrates considered, we find that it originates in the spontaneous anti-parallel alignment of the water dipoles in the first two water layers near the solid interface. The interfacial layers exhibit net ferroelectric ordering, resulting in an overall anti-ferroelectric arrangement of confined water. Together with constrained hydrogen-bonding orientations, this leads to much reduced out-of-plane polarization. Furthermore, we directly contrast AIMD and simple classical force-field simulations, revealing important differences. This work offers insight into a property of water that is critical in modulating surface forces, the electric-double-layer formation and molecular solvation, and shows a way to compute it.
Collapse
Affiliation(s)
- T Dufils
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - C Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Lennard-Jones Centre, University of Cambridge Trinity Ln Cambridge CB2 1TN UK
| | - J Chen
- School of Physics, Peking University Beijing 100871 China
| | - A K Geim
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - L Fumagalli
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - A Michaelides
- Lennard-Jones Centre, University of Cambridge Trinity Ln Cambridge CB2 1TN UK
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
6
|
Freger V. Dielectric exclusion, an éminence grise. Adv Colloid Interface Sci 2023; 319:102972. [PMID: 37556866 DOI: 10.1016/j.cis.2023.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Dielectric exclusion has long been well-established as the key mechanism in membrane desalination, critical for delivering the required levels of salt rejection, also playing important role in electro-membrane processes, nanofluidics, and biomimetics. Unfortunately, its elusive nature and many features, such as dependence on the pore size, membrane hydration, and ion size and charge, make it deceivingly similar to the other ion exclusions mechanisms, steric and Donnan, which has led to much controversy and misconceptions. Starting from the Born model and the concept of self-energy, the present paper reviews and highlights the physical basis of dielectric exclusion, its main features and the ways it may be looked at. It discusses what makes the dielectric exclusion both similar and distinctly different from the other mechanism and its synergy and intimate connection with other phenomena, such as Donnan exclusion, permeability-selectivity upper-bound, and selectivity of charged membranes towards uncharged solutes. The paper also addresses subjects that still cause much controversy at present, such as appropriate measures of ionic radii and the subtle distinction between the dielectric exclusion and primary ion hydration. It also points to gaps that need to be bridged towards more complete theory. The points addressed here are important for understanding, modeling and development of various next-generation separation technologies including water purification, resource recovery and reuse, and green energy generation and storage.
Collapse
Affiliation(s)
- Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel; Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa 32000, Israel; Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel.
| |
Collapse
|
7
|
Potisk T, Sablić J, Svenšek D, Diego ES, Teran FJ, Praprotnik M. Analyte‐Driven Clustering of Bio‐Conjugated Magnetic Nanoparticles. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Tilen Potisk
- Laboratory for Molecular Modeling National Institute of Chemistry SI‐1001 Ljubljana Slovenia
- Faculty of Mathematics and Physics University of Ljubljana SI‐1001 Ljubljana Slovenia
| | - Jurij Sablić
- Laboratory for Molecular Modeling National Institute of Chemistry SI‐1001 Ljubljana Slovenia
- Department of Condensed Matter Physics University of Barcelona E‐08028 Barcelona Spain
- Centre Européen de Calcul Atomique et Moléculaire École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Daniel Svenšek
- Laboratory for Molecular Modeling National Institute of Chemistry SI‐1001 Ljubljana Slovenia
- Faculty of Mathematics and Physics University of Ljubljana SI‐1001 Ljubljana Slovenia
| | | | - Francisco J. Teran
- IMDEA Nanociencia Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea‐Nanociencia) Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| | - Matej Praprotnik
- Laboratory for Molecular Modeling National Institute of Chemistry SI‐1001 Ljubljana Slovenia
- Faculty of Mathematics and Physics University of Ljubljana SI‐1001 Ljubljana Slovenia
| |
Collapse
|
8
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|