1
|
Tan M, Fu D, Gao B, Liang Y, Xu Q. Supercritical CO 2-Guided Passivation Strategies for Oxygen Vacancy Modulation in LaMnO 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405734. [PMID: 39444086 DOI: 10.1002/smll.202405734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The development of 2D magnetic materials and the modulation of intrinsic magnetism are essential for the exploration of new materials in the field of information storage. Despite its strong ferromagnetic properties, LaMnO3 is hindered by a high number of oxygen defects, which result in a relatively short lifetime when employed in electronic memory devices. Here the successful transformation of bulk LaMnO3 into a 2D structure using supercritical carbon dioxide.is reported. This technique enables the successful modulation of the magnetic properties of the material. Interestingly, it is found that the oxygen defect is repaired, which is in sharp contrast to conventional perovskites. These promising results demonstrate the potential of using the magnetic properties of LaMnO3, which is of great importance in the context of expanding its application in electronic devices.
Collapse
Affiliation(s)
- Mingzhu Tan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Duo Fu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Bo Gao
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Yuning Liang
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
2
|
Wang Q, Lu Q, Zhang X, Xiang L, Cheng L, Li X, Zhou H, Zhai X. Emergent Uniaxial Magnetic Anisotropy in High-Integrity, Uniform Freestanding LaMnO 3 Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68197-68203. [PMID: 39585904 DOI: 10.1021/acsami.4c14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The water-liftoff fabrication of freestanding oxide membranes at nanometer-scale thickness marks a major breakthrough in expanding the family of soft electromagnetic materials. The structure reconstruction in the newly formed two-dimensional freestanding membrane due to the chemical liftoff provides an excellent opportunity to achieve applicable functionalities. In this report, we present the anisotropic relaxation of a LaMnO3 epitaxial film into a nearly wrinkle- and crack-free membrane, realized by high-temperature (160 °C)-treated PMMA as the protective layer during the water liftoff process. Remarkably, the resulting membrane exhibits a 2-fold uniaxial magnetic anisotropy, which is in stark contrast to the typical 4-fold biaxial magnetic anisotropy in biaxially strained epitaxial thin films. By performing half-order synchrotron X-ray diffraction experiments, the membrane is found to exhibit almost unvaried Mn-O bond lengths but uniaxially enlarged Mn-O-Mn bond angles, agreeing with the uniaxial magnetic anisotropy. Our study paves the way for engineering macroscopically high-quality membranes free of wrinkles and cracks, unlocking emergent electromagnetic properties that are essential for the integration and application of functional devices.
Collapse
Affiliation(s)
- Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinwen Lu
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xingmin Zhang
- Institute of Advanced Science Facilities, No.268 Zhenyuan Road, Guangming District, Shenzhen 518107, China
| | - Liuzhi Xiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaolong Li
- Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai Synchrotron Radiation Facility, Shanghai 201204, China
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaofang Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Ren J, Zhong X. Prospect for detecting magnetism in two-dimensional perovskite oxides by electron magnetic circular dichroism. Micron 2024; 187:103718. [PMID: 39305702 DOI: 10.1016/j.micron.2024.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/12/2024]
Abstract
Two-dimensional (2D) magnets, especially strongly correlated 2D transition-metal perovskite oxides, have attracted significant attention due to their intriguing electromagnetic properties for potential applications in spintronic devices. Potentially electron magnetic circular dichroism (EMCD) under zone axis conditions can provide three-dimensional components of magnetic moments in 2D materials, but the collection efficiency and the signal-to-noise ratio for out-of-plane (OOP) components is limited due to the limited collection angle. Here we conducted a comprehensive computational simulation to optimize the experimental setting of EMCD for detecting the OOP components of magnetic moments in three beam conditions (3BCs) on 2D perovskite oxides La1-xSrxMnO3 (LSMO) in a TEM. The key parameters are sample thickness, accelerating voltage, Sr doping concentration, collection semi-angle and position, and sample orientation including systematic reflections excited and tilt angle. Our simulation results demonstrate that the relative dynamical diffraction coefficients of Mn OOP EMCD of LaMnO3 with a thickness ranging from 1 unit cell (uc) to 4 uc can be optimized in a 3BC with (110) systematic reflections excited and a relatively large collection semi-angle of 19 mrad at the relatively low accelerating voltage of 80 kV. In most cases, the relative dynamic diffraction coefficients for La1-xSrxMnO3 with the thickness ranging from 1 uc to 4 uc decrease with the increase of the Sr doping concentrations. The optimal tilt angle from a zone axis to a 3BC is 18° for the cases of the LSMO thickness of 2 uc, 3 uc and 4 uc, and 22° for the monolayer LSMO. Our work provides the theoretical simulation foundation for optimized EMCD experiments for measuring OOP components of magnetic moments in 2D transition-metal perovskite oxides.
Collapse
Affiliation(s)
- Jie Ren
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen 518048, PR China; Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Xiaoyan Zhong
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen 518048, PR China; Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China.
| |
Collapse
|
4
|
Balakrishnan PP, Ferenc Segedin D, Chow LE, Quarterman P, Muramoto S, Surendran M, Patel RK, LaBollita H, Pan GA, Song Q, Zhang Y, El Baggari I, Jagadish K, Shao YT, Goodge BH, Kourkoutis LF, Middey S, Botana AS, Ravichandran J, Ariando A, Mundy JA, Grutter AJ. Extensive hydrogen incorporation is not necessary for superconductivity in topotactically reduced nickelates. Nat Commun 2024; 15:7387. [PMID: 39191732 DOI: 10.1038/s41467-024-51479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
A key open question in the study of layered superconducting nickelate films is the role that hydrogen incorporation into the lattice plays in the appearance of the superconducting state. Due to the challenges of stabilizing highly crystalline square planar nickelate films, films are prepared by the deposition of a more stable parent compound which is then transformed into the target phase via a topotactic reaction with a strongly reducing agent such as CaH2. Recent studies, both experimental and theoretical, have introduced the possibility that the incorporation of hydrogen from the reducing agent into the nickelate lattice may be critical for the superconductivity. In this work, we use secondary ion mass spectrometry to examine superconducting La1-xXxNiO2 / SrTiO3 (X = Ca and Sr) and Nd6Ni5O12 / NdGaO3 films, along with non-superconducting NdNiO2 / SrTiO3 and (Nd,Sr)NiO2 / SrTiO3. We find no evidence for extensive hydrogen incorporation across a broad range of samples, including both superconducting and non-superconducting films. Theoretical calculations indicate that hydrogen incorporation is broadly energetically unfavorable in these systems, supporting our conclusion that extensive hydrogen incorporation is not generally required to achieve a superconducting state in layered square-planar nickelates.
Collapse
Affiliation(s)
- Purnima P Balakrishnan
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | | | - Lin Er Chow
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, 117551, Singapore
| | - P Quarterman
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Shin Muramoto
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Mythili Surendran
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
- Core Center for Excellence in Nano Imaging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ranjan K Patel
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | | | - Grace A Pan
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Qi Song
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Yang Zhang
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA, 02138, USA
| | - Ismail El Baggari
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA, 02138, USA
| | - Koushik Jagadish
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yu-Tsun Shao
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
- Core Center for Excellence in Nano Imaging, University of Southern California, 925 Bloom Walk, Los Angeles, CA, 90089, USA
| | - Berit H Goodge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| | - Srimanta Middey
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Antia S Botana
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Jayakanth Ravichandran
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA.
- Core Center for Excellence in Nano Imaging, University of Southern California, Los Angeles, CA, 90089, USA.
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - A Ariando
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, 117551, Singapore.
| | - Julia A Mundy
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| | - Alexander J Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
5
|
Wang H, Harbola V, Wu YJ, van Aken PA, Mannhart J. Interface Design beyond Epitaxy: Oxide Heterostructures Comprising Symmetry-Forbidden Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405065. [PMID: 38838331 DOI: 10.1002/adma.202405065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Epitaxial growth of thin-film heterostructures is generally considered the most successful procedure to obtain interfaces of excellent structural and electronic quality between 3D materials. However, these interfaces can only join material systems with crystal lattices of matching symmetries and lattice constants. This article presents a novel category of interfaces, the fabrication of which is membrane-based and does not require epitaxial growth. These interfaces therefore overcome the limitations imposed by epitaxy. Leveraging the additional degrees of freedom gained, atomically clean interfaces are demonstrated between threefold symmetric sapphire and fourfold symmetric SrTiO3. Atomic-resolution imaging reveals structurally well-defined interfaces with a novel moiré-type reconstruction.
Collapse
Affiliation(s)
- Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Varun Harbola
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Yu-Jung Wu
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Jochen Mannhart
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| |
Collapse
|
6
|
Yun S, le Cozannet TE, Christoffersen CH, Brand E, Jespersen TS, Pryds N. Strain Engineering: Perfecting Freestanding Perovskite Oxide Fabrication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310782. [PMID: 38431927 DOI: 10.1002/smll.202310782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Freestanding oxide membranes provide a promising path for integrating devices on silicon and flexible platforms. To ensure optimal device performance, these membranes must be of high crystal quality, stoichiometric, and their morphology free from cracks and wrinkles. Often, layers transferred on substrates show wrinkles and cracks due to a lattice relaxation from an epitaxial mismatch. Doping the sacrificial layer of Sr3Al2O6 (SAO) with Ca or Ba offers a promising solution to overcome these challenges, yet its effects remain critically underexplored. A systematic study of doping Ca into SAO is presented, optimizing the pulsed laser deposition (PLD) conditions, and adjusting the supporting polymer type and thickness, demonstrating that strain engineering can effectively eliminate these imperfections. Using SrTiO3 as a case study, it is found that Ca1.5Sr1.5Al2O6 offers a near-perfect match and a defect-free freestanding membrane. This approach, using the water-soluble Bax/CaxSr3-xAl2O6 family, paves the way for producing high-quality, large freestanding membranes for functional oxide devices.
Collapse
Affiliation(s)
- Shinhee Yun
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Thomas Emil le Cozannet
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | | | - Eric Brand
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Thomas Sand Jespersen
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
7
|
Zhang P, He B, Guo J, Wang Q, Han Y, Shi C, Chen Y, Fang H, Wang J, Yan S, Lü W. Extreme Enhanced Curie Temperature and Perpendicular Exchange Bias in Freestanding Ferromagnetic Superlattices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17309-17316. [PMID: 36949634 DOI: 10.1021/acsami.2c22715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Most recently, the freestanding of an epitaxial single-crystal oxide has been greatly developed to its fundamental concerns and the possibility of integration with metal, two-dimensional, and organic materials for more promising functionalities. In an artificial ferromagnetic oxide heterostructure and superlattice, the release of the substrate constraint can induce a reasonable transformation of the magnetic structure because the change of the lattice field occurs. In this study, we have comprehensively investigated the evolution of magnetic properties of (La0.7Ca0.3MnO3/SrRuO3)n [(LCMO/SRO)n] ferromagnetic superlattices while they are epitaxially on SrTiO3 and freestanding. It is found that the Curie temperature and the perpendicular exchange bias of the freestanding superlattices exhibit extreme sensitivity to the interface number and the thickness of LCMO and SRO, which can maximumly reach ∼293 K and ∼1150 Oe. These enhanced and bulk-beyond magnetic behaviors originate from the interfacial magnetic transition from ferromagnetic to antiferromagnetic via the charge reconstruction with the assistance of strain. Our study provides not only a reference for designing a high-performance flexible ferromagnetic architectural superlattice but also a deep understanding of the interfacial effect in freestanding ferromagnetic heterostructures benefiting flexible spintronics.
Collapse
Affiliation(s)
- Peng Zhang
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Bin He
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Jinrui Guo
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Qixiang Wang
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China
| | - Yue Han
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China
| | - Chaoqun Shi
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Yanan Chen
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Hong Fang
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China
| | - Jie Wang
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China
| | - Shishen Yan
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Weiming Lü
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China
| |
Collapse
|
8
|
Shen J, Dong Z, Qi M, Zhang Y, Zhu C, Wu Z, Li D. Observation of Moiré Patterns in Twisted Stacks of Bilayer Perovskite Oxide Nanomembranes with Various Lattice Symmetries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50386-50392. [PMID: 36287237 DOI: 10.1021/acsami.2c14746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design and fabrication of novel quantum devices in which exotic phenomena arise from moiré physics have sparked a new race of conceptualization and creation of artificial lattice structures. This interest is further extended to the research on thin-film transition metal oxides, with the goal of synthesizing twisted layers of perovskite oxides concurrently revealing moiré landscapes. By utilizing a sacrificial-layer-based approach, we show that such high-quality twisted bilayer oxide nanomembrane structures can be achieved. We observe atomic-scale distinct moiré patterns directly formed with different twist angles, and the symmetry-inequivalent nanomembranes can be stacked together to constitute new complex moiré configurations. This study paves the way to the construction of higher-order artificial oxide heterostructures based on different materials/symmetries and provides the materials foundation for investigating moiré-related electronic effects in an expanded selection of twisted oxide thin films.
Collapse
Affiliation(s)
- Jiaying Shen
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing100876, P. R. China
| | - Zhengang Dong
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing100876, P. R. China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - MingQun Qi
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing100876, P. R. China
| | - Yang Zhang
- Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin300071, P. R. China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing210096, China
| | - Zhenping Wu
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing100876, P. R. China
| | - Danfeng Li
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong999077, China
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| |
Collapse
|