1
|
Li X, Zhang J, Liu X, Wu Z, Yu Z, Zhang W, Wang Y, Li Z, Cohen Stuart MA, Sagis LMC, Lv M, Xiao J, Li Y. Gastric-mucus penetrating and responsive microgels for alleviating Helicobacter pylori-induced gastritis. J Control Release 2025; 383:113741. [PMID: 40288498 DOI: 10.1016/j.jconrel.2025.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Helicobacter pylori (H. pylori) is a prevalent global pathogen responsible for gastritis and the potential development of gastric cancer. Sulforaphane (SFN), a foodborne compound, exhibits notable antibiotic properties against H. pylori. However, its utility is limited by poor stability and susceptibility to environmental degradation. Here, we developed a gastric-responsive-release microgel for delivering anti-H. pylori SFN. The microgels were prepared by cross-linking α-lactalbumin nanotubes then coated with chitosan (CTS-MGs). SFN was loaded into microgels with a loading rate of 10.73 ± 0.25 %. The CTS-MG showed a strong adhesion to the gastric mucosa, prolonging gastric retention for up to 24 h and responsively releasing SFN in the stomach. Furthermore, CTS-MG/SFN dissociated and released nanotubes/SFN, which could penetrate into the gastric mucus layer and arrive at the deepest mucus sites where most H. pylori were colonized. Our results revealed that CTS-MG/SFN displayed an obvious inhibitory effect against H. pylori. The oral administration of CTS-MG/SFN in H. pylori-infected mice effectively alleviated H. pylori-induced gastritis and modulated gastric microbiota homeostasis. This work demonstrated high potential of CTS-MG microgels for gastric-targeted and oral delivery of antibiotic natural compounds against H. pylori infection.
Collapse
Affiliation(s)
- Xing Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jipeng Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xiangyu Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zijian Wu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wen Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Zekun Li
- College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Martien A Cohen Stuart
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708, WE, the Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University and Research, Wageningen 6708, WG, the Netherlands
| | - Mingchun Lv
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, 518119, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Jiao M, Kong W, Liu W, Dong Z, Yang J, Wei Z, Lu X, Wei Y, Zhuang J. Boosting the antibacterial potency of natural products through nanotechnologies. Int J Pharm 2025; 674:125437. [PMID: 40057213 DOI: 10.1016/j.ijpharm.2025.125437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
The advent of bacterial resistance has led to a notable challenge in effectively treating bacterial infections. This highlights the urgent need for the development of novel and effective drugs to combat bacterial infections. Medicinal plants, with their rich and diverse natural compounds, represent a valuable source for the discovery of novel antibacterial agents. Many of these natural compounds exhibit strong antibacterial functions, offering a promising direction for the development of antibacterial drugs. Furthermore, the application of nanotechnology in the development of antibacterial natural products has become a topic of considerable interest due to the advantages it offers, including the potential to enhance drug solubility. The efficacy of natural antibacterial agents is significantly enhanced through nanotechnology. This review offers a comprehensive overview of recent advances in the delivery of natural antibacterial compounds using a range of nanoformulation strategies.
Collapse
Affiliation(s)
- Min Jiao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Weiwen Kong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Wenjuan Liu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zirong Dong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jinlong Yang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zibo Wei
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xinrui Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yuning Wei
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jie Zhuang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
3
|
Wen Y, Shi R, Cheng Y, Zhang Y, Zhao L, Xia X, Meng X, Chen Z. Iron-Cobalt Alloy@Graphene-Engineered Milk Extracellular Vesicles for Gastric Retentive Drug Delivery. Chembiochem 2025; 26:e202401048. [PMID: 40066858 DOI: 10.1002/cbic.202401048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Oral drug delivery is widely used for treating gastric diseases as it allows drugs to act directly on gastric lesions, thereby improving therapeutic outcomes. However, its efficacy is hindered by the specific gastric environment, such as the gastric mucosal barrier, which limits drug penetration, and the short gastric emptying time, which results in transient residence time. Raw milk-derived extracellular vesicles (M-EVs) offer promise as a gastric drug delivery platform. Their high cellular affinity, stability under gastrointestinal conditions, and ability to protect drugs from acidic and enzymatic degradation make them suitable for this purpose. Incorporating mangetic nanoparticles encapsulated in M-EV provides magnetic navigation and active mucosal penetration capabilities. Herein, we developed a gastric drug delivery system based on iron-cobalt alloy@graphene (FeCo@G)-engineered M-EV (M-FNP). M-FNP serves as a versatile drug carrier that can load both small molecules and proteins through simple physical approach. And it demonstrates stability in the simulated gastric fluid system for at least 6 hours. Under magnetic field guidance, it penetrates the simulated mucosal layer and is internalized by cells within 4 hours significantly enhancing cellular drug uptake. M-FNP is expected to serve as an innovative drug delivery platform with enhanced retention capabilities within the stomach.
Collapse
Affiliation(s)
- Yijing Wen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Rui Shi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Yuqi Cheng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Lingjin Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xiangxian Meng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
4
|
Zheng Y, Zhang T, Shao J, Du Y, Li Z, Zhang L, Gao J. Antibiotic-free responsive biomaterials for specific and targeted Helicobacter pylori eradication. J Control Release 2025; 379:708-729. [PMID: 39863021 DOI: 10.1016/j.jconrel.2025.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Gastric cancer is highly correlated with Helicobacter pylori (H. pylori) infection. Approximately 50 % of the population worldwide is infected with H. pylori. However, current treatment regimens face severe challenges including drug resistance and gut microbiota disruption. An integrative treatment with slight negative influences on intestinal flora, conforming with concepts of integrative prevention of gastric cancer, is urgently needed. Non-antibiotic responsive biomaterials can respond to different stimuli, including pH, enzymes, light, ultrasound and magnetism, under which biomaterials are specifically activated to perform antibacterial capabilities, while neutral intestinal microenvironments differ from gastric microenvironments or inflammatory sites and have no or minimal irradiation via precisely controlled exogenous stimuli, which may not only overcome antibiotic resistance but also avoid gut microbiota disorders. First, the latest progress in responsive biomaterials against H. pylori without gut microbiome disturbance and their anti-H. pylori performances are profoundly summarized. Second, the mechanisms against planktonic bacteria, biofilms and intracellular bacteria are discussed respectively. Finally, the strategies of specific and targeted H. pylori elimination by responsive biomaterials are introduced. Additionally, the challenges and the focus of future research on translation into clinical application are fully proposed. Antibiotic-free responsive biomaterials for specific and targeted H. pylori eradication represent an innovative approach.
Collapse
Affiliation(s)
- Yating Zheng
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Yangzhou Branch of Jiangsu Provincial Corps of Chinese People's Armed Police Force, Yangzhou 225007, Jiangsu, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Juan Shao
- Yangzhou Branch of Jiangsu Provincial Corps of Chinese People's Armed Police Force, Yangzhou 225007, Jiangsu, China
| | - Yiqi Du
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Zhaoshen Li
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Li Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China.
| |
Collapse
|
5
|
Xue G, Jiang H, Song Z, Zhao Y, Gao W, Lv B, Cao J. Dual Targeting Biomimetic Carrier-Free Nanosystems for Photo-Chemotherapy of Rheumatoid Arthritis via Macrophage Apoptosis and Re-Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406877. [PMID: 39840927 PMCID: PMC11904978 DOI: 10.1002/advs.202406877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA. Here, dual-targeting biomimetic carrier-free nanomaterials (BSA-MTX-CyI nanosystem, BMC) is developed for synergistic photo-chemotherapy of RA. Bovine serum albumin (BSA), which has high affinity with SPARC (secreted protein acidic and rich in cysteine) in the RA joint microenvironment, is selected as the hydrophilic end and coupled with MTX and the phototherapeutic agent CyI to self-assemble into BMC. In vitro and in vivo experiments revealed that BMC accumulated significantly at the joint site in collagen antibody-induced arthritis mice and could be specifically recognized and taken up by folate receptors in proinflammatory M1 macrophages. Upon near-infrared laser irradiation, CyI exerted photodynamic and photothermal effects, whereas MTX not only inhibited cell proliferation but also increased cell sensitivity to reactive oxygen species, enhancing the apoptotic effect induced by CyI and achieving synergistic photo-chemotherapy. Moreover, BMC could induce macrophages to reprogram into anti-inflammatory M2 macrophages. This study provides innovative approaches for RA treatment via macrophage apoptosis and re-polarization.
Collapse
Affiliation(s)
- Guanghe Xue
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| | - Huimei Jiang
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| | - Zhenhua Song
- Department of PharmacologySchool of PharmacyQingdao UniversityQingdao266071China
| | - Yifan Zhao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| | - Wen Gao
- Department of Radiation OncologyThe Affiliated Hospital of Qingdao UniversityQingdao266000China
| | - Bai Lv
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| |
Collapse
|
6
|
Yin Z, Li L, Zhang Q, Zhang X, Shi R, Xia X, Wang Z, Li S, Ye M, Liu Y, Tan W, Chen Z. PerC B-Cells Activation via Thermogenetics-Based CXCL12 Generator for Intraperitoneal Immunity Against Metastatic Disseminated Tumor Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2411731. [PMID: 39865939 DOI: 10.1002/adma.202411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/04/2025] [Indexed: 01/28/2025]
Abstract
During cancer peritoneal metastasis (PM), conventional antigen-presenting cells (dendritic cells, macrophages) promote tumorigenesis and immunosuppression in peritoneal cavity. While intraperitoneal immunotherapy (IPIT) has been used in clinical investigations to relieve PM, the limited knowledge of peritoneal immunocytes has hindered the development of therapeutic IPIT. Here, a dendritic cell-independent, next-generation IPIT is described that activates peritoneal cavity B (PerC B) cell subsets for intraperitoneal anti-tumor immunity via exogenous antigen presentation. The PerC B-cell-involved IPIT framework consists of an isotropic-porous, cell-fitting, thermogenetics-based CXCL12 generator. Such nanoscale thermal-confined generator can programmatically fine-tune the expression of CXCL12 to recruit disseminated tumor cells (DTCs) through CXCL12-CXCR4 axis while avoiding cytokine storm, subsequently release DTC-derived antigen to trigger PerC B-cell-involved immunity. Notably, antigen-presenting B-cell cluster, expressing the regulatory signaling molecules Ptpn6, Ms4a1, and Cd52, is identified playing the key role in the IPIT via single-cell RNA sequencing. Moreover, such IPIT availably assuages peritoneal effusion and PM in an orthotopic gastric cancer and metastatic model. Overall, this work offers a perspective on PerC B-cell-involved antigen-presenting in intraperitoneal immunity and provides a configurable strategy for activating anti-DTC immunity for next-generation IPIT.
Collapse
Affiliation(s)
- Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiaoshen Zhang
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Rui Shi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zhaoxin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
7
|
Li W, Ding Q, Li M, Zhang T, Li C, Qi M, Dong B, Fang J, Wang L, Kim JS. Stimuli-responsive and targeted nanomaterials: Revolutionizing the treatment of bacterial infections. J Control Release 2025; 377:495-523. [PMID: 39580080 DOI: 10.1016/j.jconrel.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Bacterial infections have emerged as a major threat to global public health. The effectiveness of traditional antibiotic treatments is waning due to the increasing prevalence of antimicrobial resistance, leading to an urgent demand for alternative antibacterial technologies. In this context, antibacterial nanomaterials have proven to be powerful tools for treating antibiotic-resistant and recurring infections. Targeting nanomaterials not only enable the precise delivery of bactericidal agents but also ensure controlled release at the infection site, thereby reducing potential systemic side effects. This review collates and categorizes nanomaterial-based responsive and precision-targeted antibacterial strategies into three key types: exogenous stimuli-responsive (including light, ultrasound, magnetism), bacterial microenvironment-responsive (such as pH, enzymes, hypoxia), and targeted antibacterial action (involving electrostatic interaction, covalent bonding, receptor-ligand mechanisms). Furthermore, we discuss recent advances, potential mechanisms, and future prospects in responsive and targeted antimicrobial nanomaterials, aiming to provide a comprehensive overview of the field's development and inspire the formulation of novel, precision-targeted antimicrobial strategies.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Qihang Ding
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tianshou Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| | - Jiao Fang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Shan T, Chen X, Zhou X, Wang N, Ren B, Cheng L. Stimulus-responsive biomaterials for Helicobacter pylori eradication. J Adv Res 2024; 66:209-222. [PMID: 38160707 PMCID: PMC11675045 DOI: 10.1016/j.jare.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori), the only bacterium classified as a type I (definite) carcinogen, is strongly associated with the development of gastric inflammation and adenocarcinoma. It infects the stomach of approximately half of the global population, equivalent to nearly 4.4 billion people. However, due to physiological barriers in the stomach, microbial barriers and increased antibiotic resistance, the therapeutic efficiency of standard antibiotic therapy is limited and cannot meet the clinical needs in some areas. Combining stimulus-responsive biomaterials with certain stimuli is an emerging antibacterial strategy. Stimulus-responsive biomaterials can respond to chemical, biological or physical cues in the environment with corresponding changes in their own properties and functions, highlighting a more intelligent, targeting and efficient aspect for H. pylori therapy. AIM OF REVIEW This review describes the critical obstacles in the current treatment of H. pylori, summarizes the recent advances in stimulus-responsive biomaterials against H. pylori by elucidating their working mechanisms and antibacterial performances under different types of stimuli (pH, enzymes, light, magnetic and ultrasound irradiations), and attempts to analyze the future prospects of such smart biomaterial for H. pylori eradication. Key Scientific Concepts of Review: Any characteristic property or change in the biomilieu at the H. pylori infected site (endogenous stimuli) or specific iatrogenic conditions in vitro (exogenous stimuli) can act as cues to activate or potentiate the antibacterial activity of responsive biomaterials. The responsiveness of these materials to endogenous stimuli enhances antimicrobial targeting, and makes physiological barriers that would otherwise hinder conventional H. pylori therapies a key factor in facilitating antibacterial effects. The responsiveness to exogenous stimuli greatly prolongs the action time of antimicrobial materials and pinpoints the site of infection, thereby reducing toxic side effects. These findings pave the way for the development of more precise and effective anti-H. pylori treatment.
Collapse
Affiliation(s)
- Tiantian Shan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nanxi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Huang Y, Zhao H, Zhang Y, Zhao C, Ren J, Qu X. Bioorthogonal Regulated Metabolic Balance for Promotion of Ferroptosis and Mild Photothermal Therapy. ACS NANO 2024; 18:28104-28114. [PMID: 39373015 DOI: 10.1021/acsnano.4c07558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The nanozyme with NADPH oxidase (NOX)-like activity can promote the consumption of NADPH and the generation of free radicals. In consideration of that the upregulation of glucose-6-phosphate dehydrogenase (G6PD) would accelerate the compensation production of NADPH, for inhibition of G6PD activity, our designed bioorthogonal nanozyme can in situ catalyze pro-DHEA to produce G6PD inhibitor and dehydroepiandrosterone (DHEA) drugs to inhibit G6PD activity. Therefore, the well-defined platform can disrupt NADPH homeostasis, leading to the collapse of the antioxidant defense system in the tumor cells. The enzyme-like activity of PdCuFe is further enhanced when irradiated by NIR-II light. The destruction of NADPH homeostasis can promote ferroptosis and, in turn, facilitate mild photothermal therapy. Our design can realize NADPH depletion and greatly improve the therapeutic effect through metabolic regulation, which may provide inspiration for the design of bioorthogonal catalysis.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Cao X, Li S, Wang S, Guo R, Dong Q, Chen L, Chen Z. Graphene-Metal Nanocrystal Hybrid Materials for Bioapplications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51816-51825. [PMID: 39315731 DOI: 10.1021/acsami.4c11442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The development of functional nanomaterials is crucial for advancing personalized and precision medicine. Graphene-metal nanocrystal hybrid materials not only possess the intrinsic advantages of graphene-based materials but also exhibit additional optical, magnetic, and catalytic properties of various metal nanocrystals, showing great synergies in bioapplications, including biosensing, bioimaging, and disease treatments. In this Perspective, we discuss the advantages and design principles of graphene-metal nanocrystal hybrid materials and provide an overview of their applications in biological fields. Finally, we highlight the challenges and future directions for their practical implementation.
Collapse
Affiliation(s)
- Xiaoxu Cao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rongshen Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian Dong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Long Chen
- Faculty of Science and Technology University of Macau Taipa, Macau 999078, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Environmental Science &Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Lai Y, Zhang T, Yin X, Zhu C, Du Y, Li Z, Gao J. An antibiotic-free platform for eliminating persistent Helicobacter pylori infection without disrupting gut microbiota. Acta Pharm Sin B 2024; 14:3184-3204. [PMID: 39027245 PMCID: PMC11252519 DOI: 10.1016/j.apsb.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 07/20/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection remains the leading cause of gastric adenocarcinoma, and its eradication primarily relies on the prolonged and intensive use of two antibiotics. However, antibiotic resistance has become a compelling health issue, leading to H. pylori eradication treatment failure worldwide. Additionally, the powerlessness of antibiotics against biofilms, as well as intracellular H. pylori and the long-term damage of antibiotics to the intestinal microbiota, have also created an urgent demand for antibiotic-free approaches. Herein, we describe an antibiotic-free, multifunctional copper-organic framework (HKUST-1) platform encased in a lipid layer comprising phosphatidic acid (PA), rhamnolipid (RHL), and cholesterol (CHOL), enveloped in chitosan (CS), and loaded in an ascorbyl palmitate (AP) hydrogel: AP@CS@Lip@HKUST-1. This platform targets inflammatory sites where H. pylori aggregates through electrostatic attraction. Then, hydrolysis by matrix metalloproteinases (MMPs) releases CS-encased nanoparticles, disrupting bacterial urease activity and membrane integrity. Additionally, RHL disperses biofilms, while PA promotes lysosomal acidification and activates host autophagy, enabling clearance of intracellular H. pylori. Furthermore, AP@CS@Lip@HKUST-1 alleviates inflammation and enhances mucosal repair through delayed Cu2+ release while preserving the intestinal microbiota. Collectively, this platform presents an advanced therapeutic strategy for eradicating persistent H. pylori infection without inducing drug resistance.
Collapse
Affiliation(s)
- Yongkang Lai
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xiaojing Yin
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chunping Zhu
- Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| |
Collapse
|
12
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Yin X, Lai Y, Du Y, Zhang T, Gao J, Li Z. Metal-Based Nanoparticles: A Prospective Strategy for Helicobacter pylori Treatment. Int J Nanomedicine 2023; 18:2413-2429. [PMID: 37192898 PMCID: PMC10182771 DOI: 10.2147/ijn.s405052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 05/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious pathogen and the leading cause of gastrointestinal diseases, including gastric adenocarcinoma. Currently, bismuth quadruple therapy is the recommended first-line treatment, and it is reported to be highly effective, with >90% eradication rates on a consistent basis. However, the overuse of antibiotics causes H. pylori to become increasingly resistant to antibiotics, making its eradication unlikely in the foreseeable future. Besides, the effect of antibiotic treatments on the gut microbiota also needs to be considered. Therefore, effective, selective, antibiotic-free antibacterial strategies are urgently required. Due to their unique physiochemical properties, such as the release of metal ions, the generation of reactive oxygen species, and photothermal/photodynamic effects, metal-based nanoparticles have attracted a great deal of interest. In this article, we review recent advances in the design, antimicrobial mechanisms and applications of metal-based nanoparticles for the eradication of H. pylori. Additionally, we discuss current challenges in this field and future perspectives that may be used in anti-H. pylori strategies.
Collapse
Affiliation(s)
- Xiaojing Yin
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongkang Lai
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Gastroenterology, Ganzhou People’s Hospital Affiliated to Nanchang University, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
14
|
Yin Z, Shi R, Xia X, Li L, Yang Y, Li S, Xu J, Xu Y, Cai X, Wang S, Liu Z, Peng T, Peng Y, Wang H, Ye M, Liu Y, Chen Z, Tan W. An Implantable Magnetic Vascular Scaffold for Circulating Tumor Cell Removal In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207870. [PMID: 36271719 DOI: 10.1002/adma.202207870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
An integrated trapped device (ITD) capable of removal of circulating tumor cells (CTCs) can assuage or even prevent metastasis. However, adhesion repertoires are ordinarily neglected in the design of ITDs, possibly leading to the omission of highly metastatic CTC and treatment failure. Here a vascular-like ITD with adhesive sites and wireless magnetothermal response to remove highly metastatic CTC in vivo is presented. Such a vascular-like ITD comprises circumferential well-aligned fibers and artificial adhesion repertoires and is optimized for magnetothermal integration. Continuous and repeated capture in a dynamic environment increases capture efficiency over time. Meanwhile, the heat generation of the ITD leads to the capture of CTC death owing to cell heat sensitivity. Furthermore, the constructed bioinspired ultrastructure of the ITD prevents vascular blockage and induces potential vascular regeneration. Overall, this work defines an extendable strategy for constructing adhesion repertoires against intravascular shear forces, provides a vascular-like ITD for reducing CTC counts, and is expected to alleviate the risk of cancer recurrence.
Collapse
Affiliation(s)
- Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Rui Shi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yiting Xu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinqi Cai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zhangkun Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Ying Peng
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Hua Wang
- Pediatric Research Institute, Hunan Children's Hospital, Changsha, 410007, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|