1
|
Gao S, Hou D, Wang X, Yu J, Dong J, Li T, Sun C. Detoxification effect of sodium thiosulfate on cadmium poisoning in Litopenaeus vannamei and the mechanisms of intestinal flora regulation. MARINE POLLUTION BULLETIN 2024; 209:117053. [PMID: 39396450 DOI: 10.1016/j.marpolbul.2024.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Cadmium (Cd) is currently one of the heavy metals with the highest environmental toxicity impact. Sodium thiosulfate (Na2S2O3) is a commonly used heavy metal detoxification drug in clinical practice, however, it has not been used for Cd detoxification of Litopenaeus vannamei. The present study used exposure of L. vannamei to 150 μg/L of Cd while mitigating in the addition of 75 μg/L of Na2S2O3 for 28 days. The goal was to study the detoxifying effect of Na2S2O3 on L. vannamei poisoning and its role in intestinal flora. The results showed that the growth of Cd group was inhibited, and the growth rate and weight gain of Cd + ST group were greater than that of Cd group. The function and structure of L. vannamei intestinal microorganisms were significantly changed under Cd stress. This work reveals that Na2S2O3 can mitigate the damage caused by this concentration to L. vannamei to a certain extent.
Collapse
Affiliation(s)
- Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Ting Li
- Hainan zhongzheng aquatic science and technology Co., LTD, China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.
| |
Collapse
|
2
|
Wang D, Wang X, Hu B, Wang J, Zou Y, Guo J, Li Z, Wang S, Li Y, Song G, Wang H, Liu Y. Strain- and Electron Doping-Induced In-Plane Spin Orientation at Room Temperature in Single-Layer CrTe 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28791-28797. [PMID: 38783664 DOI: 10.1021/acsami.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ferromagnets with a Curie temperature surpassing room temperature (RT) are highly sought after for advancing planar spintronics. The ultrathin CrTe2 is proposed as a promising two-dimensional (2D) ferromagnet with a Curie temperature above 300 K. However, its single-layer film is highly susceptible to specific external perturbations, leading to variable magnetic features depending on the environment. The magnetic ordering of single-layer CrTe2 remains a topic of debate, and experimental confirmation of ferromagnetic order at RT is still pending. In our study, we utilized molecular beam epitaxy to create a single-layer 1T-CrTe2 on bilayer graphene, demonstrating ferromagnetism above 300 K with in-plane magnetization through superconducting quantum interference devices (SQUID) measurements. Our density functional theory (DFT) calculations suggest that the ferromagnetic properties stem from epitaxial strain, which increases the distance between adjacent Cr atoms within the layer by about 1.6% and enhances the Cr-Te-Cr angle by approximately 1.6°. Due to its interaction with the graphene substrate, the magnetic moment transitions from an out-of-plane to an in-plane orientation, while electronic doping exceeds 1.5 e/u.c. Combining DFT calculations with in situ scanning tunneling microscopy (STM) characterizations allowed us to determine the configuration of the CrTe2 single layer on graphene. This discovery presents the first experimental proof of ferromagnetic order in single-layer CrTe2 with a Curie temperature above RT, laying the groundwork for future applications of CrTe2 single-layer-based spintronic devices.
Collapse
Affiliation(s)
- Donghui Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xin Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bingxi Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiaxuan Wang
- Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Yuxiao Zou
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jin Guo
- Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Zezhong Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Shuting Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guofeng Song
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hai Wang
- Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Ying Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
3
|
Guo Y, Zhang Y, Liu QL, Zhou Z, He J, Yuan S, Heine T, Wang J. Laser-Induced Ultrafast Spin Injection in All-Semiconductor Magnetic CrI 3/WSe 2 Heterobilayer. ACS NANO 2024; 18:11732-11739. [PMID: 38670539 PMCID: PMC11080996 DOI: 10.1021/acsnano.3c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Spin injection stands out as a crucial method employed for initializing, manipulating, and measuring the spin states of electrons, which are fundamental to the creation of qubits in quantum computing. However, ensuring efficient spin injection while maintaining compatibility with standard semiconductor processing techniques is a significant challenge. Herein, we demonstrate the capability of inducing an ultrafast spin injection into a WSe2 layer from a magnetic CrI3 layer on a femtosecond time scale, achieved through real-time time-dependent density functional theory calculations upon a laser pulse. Following the peak of the magnetic moment in the CrI3 sublayer, the magnetic moment of the WSe2 layer reaches a maximum of 0.89 μB (per unit cell containing 4 WSe2 and 1 CrI3 units). During the spin dynamics, spin-polarized excited electrons transfer from the WSe2 layer to the CrI3 layer via type-II band alignment. The large spin splitting in conduction bands and the difference in the number of spin-polarized local unoccupied states available in the CrI3 layer lead to a net spin in the WSe2 layer. Furthermore, we confirmed that the number of available states, the spin-flip process, and the laser pulse parameters play important roles during the spin injection process. This work highlights the dynamic and rapid nature of spin manipulation in layered all-semiconductor systems, offering significant implications for the development and enhancement of quantum information processing technologies.
Collapse
Affiliation(s)
- Yilv Guo
- Key
Laboratory of Quantum Materials and Devices of Ministry of Education,
School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Dresden 01069, Germany
| | - Yehui Zhang
- Key
Laboratory of Quantum Materials and Devices of Ministry of Education,
School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Qing Long Liu
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Dresden 01069, Germany
| | - Zhaobo Zhou
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Junjie He
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Shijun Yuan
- Key
Laboratory of Quantum Materials and Devices of Ministry of Education,
School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Thomas Heine
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Dresden 01069, Germany
| | - Jinlan Wang
- Key
Laboratory of Quantum Materials and Devices of Ministry of Education,
School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
- Suzhou
Laboratory, Suzhou 215004, People’s Republic
of China
| |
Collapse
|
4
|
Jin C, Tang X, Sun Q, Mu C, Krasheninnikov AV, Kou L. Robust Magnetoelectric Coupling in FeTiO 3/Ga 2O 3 Non-van der Waals Heterostructures. J Phys Chem Lett 2024:2650-2657. [PMID: 38422484 DOI: 10.1021/acs.jpclett.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Magnetoelectric coupling represents a significant breakthrough for next-generation electronics, offering the ability to achieve nonvolatile magnetic control via electrical means. In this comprehensive investigation, leveraging first-principles calculations, we unveil a robust magnetoelectric coupling within multiferroic heterostructures (HSs) by ingeniously integrating a non-van der Waals (non-vdW) magnetic FeTiO3 monolayer with the ferroelectric (FE) Ga2O3. Diverging from conventional van der Waals (vdW) multiferroic HSs, the magnetic states of the FeTiO3 monolayer can be efficiently toggled between ferromagnetic (FM) and antiferromagnetic (AFM) configurations by reversing the polarization of the Ga2O3 monolayer. This intriguing phenomenon arises from polarization-dependent substantial interlayer electron transfers and the interplay between superexchange and direct-exchange magnetic couplings of the iron atoms. The carrier-mediated interfacial interactions induce crucial shifts in Fermi level positions, decisively imparting distinct electronic characteristics near the Fermi level of composite systems. These novel findings offer exciting prospects for the future of magnetoelectric technology.
Collapse
Affiliation(s)
- Cui Jin
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Xiao Tang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Qilong Sun
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Chenxi Mu
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
5
|
Wu C, Sun S, Gong W, Li J, Wang X. Nonvolatile switchable half-metallicity and magnetism in the MXene Hf 2MnC 2O 2/Sc 2CO 2 multiferroic heterostructure. Phys Chem Chem Phys 2024; 26:5323-5332. [PMID: 38268467 DOI: 10.1039/d3cp04847k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Nonvolatile electrical control of two-dimensional (2D) van der Waals (vdW) magnetism is important for spintronic devices. Here, using first-principles calculations, we systematically investigated the magnetic properties of the MXene Hf2MnC2O2 combined with the ferroelectric MXene Sc2CO2. When flipping the electric polarization of Sc2CO2, a transition between a semiconductor and a half-metal occurs in the Hf2MnC2O2 monolayer. Moreover, the ferromagnetic exchange parameter J1 can be enhanced to 9.67 meV under polarized P↑ of Sc2CO2, much larger than those of the pristine Hf2MnC2O2 monolayer and Hf2MnC2O2/Sc2CO2-P↓. In addition, the easy magnetization axis of the Hf2MnC2O2 monolayer is also dependent on the polarization orientation of Sc2CO2. Our results indicate a multiferroic heterostructure based on MXenes, offering an effective way for obtaining nonvolatile electrical control of electronic and magnetic properties.
Collapse
Affiliation(s)
- Changwei Wu
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, P. R. China.
- School of Electronic Information and Electrical Engineering, Huizhou University, Huizhou 516001, Guangdong, P. R. China
| | - Shanwei Sun
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Weiping Gong
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, P. R. China.
- School of Electronic Information and Electrical Engineering, Huizhou University, Huizhou 516001, Guangdong, P. R. China
| | - Jiangyu Li
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| |
Collapse
|
6
|
Yu X, Zhang X, Wang J. Fully Electrically Controlled van der Waals Multiferroic Tunnel Junctions. ACS NANO 2023; 17:25348-25356. [PMID: 38078697 DOI: 10.1021/acsnano.3c08747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The fully electrical control of the magnetic states in magnetic tunnel junctions is highly pursued for the development of the next generation of low-power and high-density information technology. However, achieving this functionality remains a formidable challenge at present. Here we propose an effective strategy by constructing a trilayer van der Waals multiferroic structure, consisting of CrI3-AgBiPSe6 and Cr2Ge2Te6-In2Se3, to achieve full-electrical control of multiferroic tunnel junctions. Within this structure, two different magnetic states of the magnetic bilayers (CrI3/Cr2Ge2Te6) can be modulated and switched in response to the polarization direction of the adjacent ferroelectric materials (AgBiPSe6/In2Se3). The intriguing magnetization reversal is mainly attributed to the polarization-field-induced band structure shift and interfacial charge transfer. On this basis, we further design two multiferroic tunnel junction devices, namely, graphene/CrI3-AgBiPSe6/graphene and graphene/Cr2Ge2Te6-In2Se3/graphene. In these devices, good interfacial Ohmic contacts are successfully obtained between the graphene electrode and the heterojunction, leading to an ultimate tunneling magnetoresistance of 9.3 × 106%. This study not only proposes a feasible strategy and identifies a promising candidate for achieving fully electrically controlled multiferroic tunnel junctions but also provides insights for designing other advanced spintronic devices.
Collapse
Affiliation(s)
- Xing Yu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiwen Zhang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education School of Physics, Southeast University, Nanjing 211189, People's Republic of China
- Suzhou Laboratory, Suzhou 215004, People's Republic of China
| |
Collapse
|
7
|
Qian Z, Ji J, Qian L, Mao Y, Yao S, Xu J, Wang L. Interlayer coupling controlled electronic and magnetic properties of two-dimensional VOCl 2/PtTe 2 van der Waals heterostructure. RSC Adv 2023; 13:35018-35025. [PMID: 38046632 PMCID: PMC10690494 DOI: 10.1039/d3ra07237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023] Open
Abstract
The coupling of hetero monolayers into van der Waals (vdW) heterostructures has become an effective way to obtain tunable physical and chemical properties of two dimensional (2D) materials. In this work, based on first principles calculations, we systematically explore the electronic and magnetic properties of a 2D VOCl2/PtTe2 heterostructure. Our results indicate that the ground state of the VOCl2/PtTe2 heterostructure is a ferromagnetic (FM) metal with large magnetic anisotropy energy, among which, the VOCl2 "sublayer" shows FM half metallic properties while the PtTe2 "sublayer" shows nonmagnetic metallic properties. The Curie temperature (TC) of VOCl2/PtTe2 is 111 K. Moreover, the FM-antiferromagnetic (AFM) phase transition can be obtained under biaxial strain. Our work provides an effective way to improve the performance of 2D monolayers in nano-electronic devices.
Collapse
Affiliation(s)
- Zhonghua Qian
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University Yangzhou 225002 China
| | - Jie Ji
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University Yangzhou 225002 China
| | - Liyan Qian
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University Yangzhou 225002 China
| | - Yuxuan Mao
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University Yangzhou 225002 China
| | - Suchen Yao
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University Yangzhou 225002 China
| | - Jingyi Xu
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University Yangzhou 225002 China
| | - Licheng Wang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University Yangzhou 225002 China
| |
Collapse
|
8
|
Pu Y, Li Y, Qiu Z, Zhou L, Fang C, Lou Y, Lv B, Wei J, Wang W, Dai Q. Electron transport, ferroelectric, piezoelectric and optical properties of two-dimensional In 2Te 3: a first-principles study. Phys Chem Chem Phys 2023; 25:28861-28870. [PMID: 37853781 DOI: 10.1039/d3cp01523h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Two-dimensional (2D) materials have garnered significant interest in the fields of optoelectronics and electronics due to their unique and diverse properties. In this work, the electron transport, ferroelectric, piezoelectric, and optical properties of 2D In2Te3 were systematically investigated using first-principles based on density functional theory. The analysis of the phonon spectrum and elastic modulus of the Born effective criterion indicates that the structure of the novel 2D In2Te3 is dynamically stable. The calculation results show that 2D In2Te3 exhibits a carrier mobility as high as 3680.99 cm2 V-1 s-1 (y direction), a high in-plane polarization of 2.428 × 10-10 C m-1, and an excellent ferroelectric phase transition barrier (52.847 meV) and piezoelectric properties (e11 = 1.52 × 10-10 C m-1). The higher carrier mobility is attributed to the band degeneracy and small carrier effective mass. In addition, biaxial strain is an effective way to modulate the band gap and optical properties of 2D In2Te3. These properties indicate that 2D In2Te3 is a promising candidate material for flexible electronic devices and ferroelectric photovoltaic devices.
Collapse
Affiliation(s)
- Yuanmao Pu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Yumin Li
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Zhibin Qiu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Lang Zhou
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Chuanli Fang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Yaya Lou
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Bing Lv
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Jun Wei
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Wenzhong Wang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
- School of Science, Minzu University of China, Beijing 100081, China
| | - Qingping Dai
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
- Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
9
|
Lu J, Guo N, Duan Y, Wang S, Mao Y, Yi S, Meng L, Yao X, Zhang X. The effect of switchable electronic polarization states on the electronic properties of two-dimensional multiferroic TMBr 2/Ga 2SSe 2 (TM = V-Ni) heterostructures. Phys Chem Chem Phys 2023; 25:21227-21235. [PMID: 37539626 DOI: 10.1039/d3cp01590d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Multiferroic van der Waals (vdW) heterostructures (HSs) prepared by combining different ferroic materials offer an exciting platform for next-generation nanoelectronic devices. In this work, we investigate the magnetoelectric coupling properties of multiferroic vdW HSs consisting of a magnetic TMBr2 (TM = V-Ni) monolayer and a ferroelectric Ga2SSe2 monolayer using first-principles theory calculations. It is found that the magnetic orderings in the magnetic TMBr2 layers are robust and the band alignment of these TMBr2/Ga2SSe2 HSs can be altered by reversing the polarization direction of the ferroelectric layer. Among them, VBr2/Ga2SSe2 and FeBr2/Ga2SSe2 HSs can be switched from a type-I to a type-II semiconductor, which allows the generation of spin-polarized and unpolarized photocurrent. Besides, CrBr2/Ga2SSe2, CoBr2/Ga2SSe2 and NiBr2/Ga2SSe2 exhibit a type-II band alignment in reverse ferroelectric polarization states. Moreover, the magnetic configuration and band alignment of these TMBr2/Ga2SSe2 HSs can be further modulated by applying an external strain. Our findings suggest the potential of TMBr2/Ga2SSe2 HSs in 2D multiferroic and spintronic applications.
Collapse
Affiliation(s)
- Jinlian Lu
- Department of Physics, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Nini Guo
- College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuanyuan Duan
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China.
| | - Shu Wang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China.
| | - Yuxuan Mao
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China.
| | - Sun Yi
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China.
| | - Lijuan Meng
- Department of Physics, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaojing Yao
- College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiuyun Zhang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
10
|
Cui Z, Zhang Y, Xiong R, Wen C, Zhou J, Sa B, Sun Z. Giant tunneling magnetoresistance in two-dimensional magnetic tunnel junctions based on double transition metal MXene ScCr 2C 2F 2. NANOSCALE ADVANCES 2022; 4:5144-5153. [PMID: 36504742 PMCID: PMC9680956 DOI: 10.1039/d2na00623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) transition metal carbides (MXenes) with intrinsic magnetism and half-metallic features show great promising applications for spintronic and magnetic devices, for instance, achieving perfect spin-filtering in van der Waals (vdW) magnetic tunnel junctions (MTJs). Herein, combining density functional theory calculations and nonequilibrium Green's function simulations, we systematically investigated the spin-dependent transport properties of 2D double transition metal MXene ScCr2C2F2-based vdW MTJs, where ScCr2C2F2 acts as the spin-filter tunnel barriers, 1T-MoS2 acts as the electrode and 2H-MoS2 as the tunnel barrier. We found that the spin-up electrons in the parallel configuration state play a decisive role in the transmission behavior. We found that all the constructed MTJs could hold large tunnel magnetoresistance (TMR) ratios over 9 × 105%. Especially, the maximum giant TMR ratio of 6.95 × 106% can be found in the vdW MTJ with trilayer 2H-MoS2 as the tunnel barrier. These results indicate the potential for spintronic applications of vdW MTJs based on 2D double transition metal MXene ScCr2C2F2.
Collapse
Affiliation(s)
- Zhou Cui
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 P. R. China
| | - Yinggan Zhang
- College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University Xiamen 361005 P. R. China
| | - Rui Xiong
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 P. R. China
| | - Cuilian Wen
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 P. R. China
| | - Jian Zhou
- School of Materials Science and Engineering, Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University Beijing 100191 P. R. China
| | - Baisheng Sa
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 P. R. China
| | - Zhimei Sun
- School of Materials Science and Engineering, Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University Beijing 100191 P. R. China
| |
Collapse
|