1
|
Wei H, Liu J, Ni Y, Hu X, Lv X, Yang L, He G, Xu Z, Gong J, Jiang C, Feng D, Xu W. Two-Dimensional Electrically Conductive Metal-Organic Framework Boosts Synaptic Plasticity for Dynamic Image Refresh, Classification, and Efferent Neuromuscular Systems. NANO LETTERS 2024. [PMID: 39570189 DOI: 10.1021/acs.nanolett.4c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
We present a two-dimensional (2D) electrically conductive metal-organic framework (EC-MOF)-based artificial synapse. The intrinsic electronic conductivity and subnanometer channels of the EC-MOF facilitate efficient ion diffusion, enable a high density of active redox centers, and significantly enhance capacitance within the artificial synapse. As a result, the synapse operates at an ultralow voltage of 10 mV and exhibits a remarkably low power consumption of approximately 1 fW, along with the longest retention time recorded for two-terminal electrolyte-type artificial synapses to date. The alignment of the quantum size of the subnanometer pores in the EC-MOF with various cations allows for versatile synaptic plasticity. This capability is applied to image refresh, classification, and efferent signal transmission for controlling artificial muscles, thereby offering a methodology for achieving tunable neuromorphic properties. These findings suggest the potential application of metal-organic frameworks in artificial nervous systems for future brain-inspired computation, peripheral interfaces, and neurorobotics.
Collapse
Affiliation(s)
- Huanhuan Wei
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, PR China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Xuanxin Hu
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xiuliang Lv
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Gang He
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, PR China
| | - Zhipeng Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Jiangdong Gong
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Chengpeng Jiang
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Dawei Feng
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
2
|
Ni Y, Liu J, Han H, Yu Q, Yang L, Xu Z, Jiang C, Liu L, Xu W. Visualized in-sensor computing. Nat Commun 2024; 15:3454. [PMID: 38658551 PMCID: PMC11043433 DOI: 10.1038/s41467-024-47630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
In artificial nervous systems, conductivity changes indicate synaptic weight updates, but they provide limited information compared to living organisms. We present the pioneering design and production of an electrochromic neuromorphic transistor employing color updates to represent synaptic weight for in-sensor computing. Here, we engineer a specialized mechanism for adaptively regulating ion doping through an ion-exchange membrane, enabling precise control over color-coded synaptic weight, an unprecedented achievement. The electrochromic neuromorphic transistor not only enhances electrochromatic capabilities for hardware coding but also establishes a visualized pattern-recognition network. Integrating the electrochromic neuromorphic transistor with an artificial whisker, we simulate a bionic reflex system inspired by the longicorn beetle, achieving real-time visualization of signal flow within the reflex arc in response to environmental stimuli. This research holds promise in extending the biomimetic coding paradigm and advancing the development of bio-hybrid interfaces, particularly in incorporating color-based expressions.
Collapse
Affiliation(s)
- Yao Ni
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Jiaqi Liu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Hong Han
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Qianbo Yu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Lu Yang
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Zhipeng Xu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Chengpeng Jiang
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Lu Liu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Wentao Xu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China.
| |
Collapse
|
3
|
Li J, Lei Y, Wang Z, Meng H, Zhang W, Li M, Tan Q, Li Z, Guo W, Wen S, Zhang J. High-Density Artificial Synapse Array Consisting of Homogeneous Electrolyte-Gated Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305430. [PMID: 38018350 PMCID: PMC10797465 DOI: 10.1002/advs.202305430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The artificial synapse array with an electrolyte-gated transistor (EGT) as an array unit presents considerable potential for neuromorphic computation. However, the integration of EGTs faces the drawback of the conflict between the polymer electrolytes and photo-lithography. This study presents a scheme based on a lateral-gate structure to realize high-density integration of EGTs and proposes the integration of 100 × 100 EGTs into a 2.5 × 2.5 cm2 glass, with a unit density of up to 1600 devices cm-2 . Furthermore, an electrolyte framework is developed to enhance the array performance, with ionic conductivity of up to 2.87 × 10-3 S cm-1 owing to the porosity of zeolitic imidazolate frameworks-67. The artificial synapse array realizes image processing functions, and exhibits high performance and homogeneity. The handwriting recognition accuracy of a representative device reaches 92.80%, with the standard deviation of all the devices being limited to 9.69%. The integrated array and its high performance demonstrate the feasibility of the scheme and provide a solid reference for the integration of EGTs.
Collapse
Affiliation(s)
- Jun Li
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
- Key Laboratory of Advanced Display and System ApplicationsMinistry of EducationShanghai UniversityShanghai200072P. R. China
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Yuxing Lei
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Zexin Wang
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Hu Meng
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Wenkui Zhang
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Mengjiao Li
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Qiuyun Tan
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Zeyuan Li
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Wei Guo
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Shengkai Wen
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System ApplicationsMinistry of EducationShanghai UniversityShanghai200072P. R. China
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| |
Collapse
|
4
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
5
|
Diao Y, Zhang Y, Li Y, Jiang J. Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:9779. [PMID: 38139625 PMCID: PMC10747618 DOI: 10.3390/s23249779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
As technologies like the Internet, artificial intelligence, and big data evolve at a rapid pace, computer architecture is transitioning from compute-intensive to memory-intensive. However, traditional von Neumann architectures encounter bottlenecks in addressing modern computational challenges. The emulation of the behaviors of a synapse at the device level by ionic/electronic devices has shown promising potential in future neural-inspired and compact artificial intelligence systems. To address these issues, this review thoroughly investigates the recent progress in metal-oxide heterostructures for neuromorphic applications. These heterostructures not only offer low power consumption and high stability but also possess optimized electrical characteristics via interface engineering. The paper first outlines various synthesis methods for metal oxides and then summarizes the neuromorphic devices using these materials and their heterostructures. More importantly, we review the emerging multifunctional applications, including neuromorphic vision, touch, and pain systems. Finally, we summarize the future prospects of neuromorphic devices with metal-oxide heterostructures and list the current challenges while offering potential solutions. This review provides insights into the design and construction of metal-oxide devices and their applications for neuromorphic systems.
Collapse
Affiliation(s)
| | | | | | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, 932 South Lushan Road, Changsha 410083, China
| |
Collapse
|
6
|
Wei H, Xu Z, Ni Y, Yang L, Sun L, Gong J, Zhang S, Qu S, Xu W. Mixed-Dimensional Nanoparticle-Nanowire Channels for Flexible Optoelectronic Artificial Synapse with Enhanced Photoelectric Response and Asymmetric Bidirectional Plasticity. NANO LETTERS 2023; 23:8743-8752. [PMID: 37698378 DOI: 10.1021/acs.nanolett.3c02836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
A mixed-dimensional dual-channel synaptic transistor composed of inorganic nanoparticles and organic nanowires was fabricated to expand the photoelectric gain range. The device can actualize the sensitization features of the nociceptor and shows improved responsiveness to visible light. Under electrical pulses with different polarities, the apparatus exhibits reconfigurable asymmetric bidirectional plasticity. Moreover, the devices demonstrate good operational tolerance and mechanical stability, retaining more than 60% of their maximum responsiveness after 100 consecutive/bidirectional and 1000 flex/flat operations. The improved photoelectric response of the device endows a high image recognition accuracy of greater than 80%. Asymmetric bidirectional plasticity is used as punishment/reward in a psychological experiment to emulate the improvement of learning motivation and enables real-time forward and backward deflection (+7 and -25°) of artificial muscle. The mixed-dimensional optoelectronic artificial synapses with switchable behavior and electron/hole transport type have important prospects for neuromorphic processing and artificial somatosensory nerves.
Collapse
Affiliation(s)
- Huanhuan Wei
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, People's Republic of China
| | - Zhipeng Xu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Lin Sun
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Jiangdong Gong
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Song Zhang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Shangda Qu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology, College of Electronic Information and Optical Engineering of Nankai University, National Institute for Advanced Materials, Nankai University, Ministry of Education, Tianjin 300350, People's Republic of China
| |
Collapse
|