1
|
He Y, Meng X, Shen Z, Jin B, Chen X, Ai B, Liu K, Ye C. Dynamically Tunable Chiroptical Activities of Flexible Chiral Plasmonic Film via Surface Buckling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407635. [PMID: 39676401 DOI: 10.1002/smll.202407635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/17/2024] [Indexed: 12/17/2024]
Abstract
Plasmonic nanoparticle-based chiral materials have attracted great interest due to their strong light-matter interaction and tunable resonance frequency. However, challenges remain in dynamically modulating the chiroptical activities while maintain strong signals. Here, chiral assemblies of gold nanospheres(AuNSs) are achieved via mechanical-induced surface buckling of elastic materials, in which linear chain assemblies of AuNSs transform into to 3D "S-liked" morphology along with the formation of unidirectional wrinkles during buckling. This asymmetrical structure leads to strong chiroptical responses, exhibiting circular dichroism (CD) response over vis-NIR range with signal as high as 2.6 degrees and a g-factor up to 0.11. Furthermore, the configuration of "S-liked" assembly is closely associated with the wrinkle shape, which can be tuned through post-stretching. This method facilitates mechanically induced dynamic and reversible modulation of CD magnitude, as well as switching of signal handedness. Taking advantages of the strong and alterable CD signal, the plasmonic chiral structures demonstrate great potential for multi-channel and dynamically switchable information encryption as a prototype. The strategy, based on manipulating the surface patterns of soft materials, opens up a new design principle for constructing chiral structure and modulating chiroptical activities in a continuously adjustable manner, advancing the development of chiral optical materials.
Collapse
Affiliation(s)
- Yisheng He
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, P. R. China
| | - Xiao Meng
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, P. R. China
| | - Zhili Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bowen Jin
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, P. R. China
| | - Xinyi Chen
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing, 400044, P. R. China
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing, 400044, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, P. R. China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, P. R. China
| |
Collapse
|
2
|
Pan S, Yang L, Zhou Y, Cao H, Hu W, Zhang W, Lu Z. Active Assembly of CsPbBr 3 Nanorods into Microcolumns by Electric Field in Nonpolar Solvent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403919. [PMID: 38845067 DOI: 10.1002/smll.202403919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 10/19/2024]
Abstract
High-precision, controllable, mass-producible assembly of nanoparticles into complex structures or devices holds immense importance in the application across various fields but it remains challenging. Here a highly controllable and reversible active assembly of colloidal CsPbBr3 nanorods, driven by an external electric field is achieved. This approach enables the nanorods dynamically orient themselves, assemble into chains, aggregate into columns, and eventually form an ordered column array, with the electric field intensity varying from 0 to 50 V µm-1 at 100 kHz. The nanorods inside the columns align parallel to the electric field, leading to a well-ordered structure. With the analysis of the interactions among the nanorods, a quantitative interpretation of the assembly is proposed. Monte Carlo calculation is also introduced to simulate the assembly process and the results prove to be in great agreement with the experimental observations. This electric field-driven assembly presents an exciting opportunity to pave the way for next-generation sensors and photonic devices based on well-developed colloidal nanoparticles.
Collapse
Affiliation(s)
- Shuhan Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Lijie Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Yao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Huimin Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Ye Z, Chen C, Cao L, Cai Z, Xu C, Kim HI, Giraldo JP, Kanaras AG, Yin Y. Reversible Modulation of Plasmonic Coupling of Gold Nanoparticles Confined within Swellable Polymer Colloidal Spheres. Angew Chem Int Ed Engl 2024; 63:e202408020. [PMID: 38845451 DOI: 10.1002/anie.202408020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Indexed: 07/21/2024]
Abstract
Dynamic optical modulation in response to stimuli provides exciting opportunities for designing novel sensing, actuating, and authentication devices. Here, we demonstrate that the reversible swelling and deswelling of crosslinked polymer colloidal spheres in response to pH and temperature changes can be utilized to drive the assembly and disassembly of the embedded gold nanoparticles (AuNPs), inducing their plasmonic coupling and decoupling and, correspondingly, color changes. The multi-responsive colloids are created by depositing a monolayer of AuNPs on the surface of resorcinol-formaldehyde (RF) nanospheres, then overcoating them with an additional RF layer, followed by a seeded growth process to enlarge the AuNPs and reduce their interparticle separation to induce significant plasmonic coupling. This configuration facilitates dynamic modulation of plasmonic coupling through the reversible swelling/deswelling of the polymer spheres in response to pH and temperature changes. The rapid and repeatable transitions between coupled and decoupled plasmonic states of AuNPs enable reversible color switching when the polymer spheres are in colloidal form or embedded in hydrogel substrates. Furthermore, leveraging the photothermal effect and stimuli-responsive plasmonic coupling of the embedded AuNPs enables the construction of hybrid hydrogel films featuring switchable anticounterfeiting patterns, showcasing the versatility and potential of this multi-stimuli-responsive plasmonic system.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Licheng Cao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Zepeng Cai
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Hye-In Kim
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO171BJ, UK
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Zhang X, Li L, Chen Y, Valenzuela C, Liu Y, Yang Y, Feng Y, Wang L, Feng W. Mechanically Tunable Circularly Polarized Luminescence of Liquid Crystal-Templated Chiral Perovskite Quantum Dots. Angew Chem Int Ed Engl 2024; 63:e202404202. [PMID: 38525500 DOI: 10.1002/anie.202404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 03/26/2024]
Abstract
Endowing perovskite quantum dots (PQDs) with circularly polarized luminescence (CPL) offers great promise for innovative chiroptical applications, but the existing strategies are inefficient in acquiring stimuli-responsive flexible chiral perovskite films with large, tunable dissymmetry factor (glum) and long-term stability. Here, we report a strategy for the design and synthesis of luminescent cholesteric liquid crystal elastomer (Lumin-CLCE) films with mechanically tunable CPL, which is enabled by liquid crystal-templated chiral self-assembly and in situ covalent cross-linking of judiciously designed photopolymerizable CsPbX3 (X=Cl, Br, I) PQD nanomonomers into the elastic polymer networks. The resulting Lumin-CLCE films showcase circularly polarized structural color in natural light and noticeable CPL with a maximum glum value of up to 1.5 under UV light. The manipulation of CPL intensity and rotation direction is achieved by controlling the self-assembled helicoidal nanostructure and the handedness of soft helices. A significant breakthrough lies in the achievement of a reversible, mechanically tunable perovskite-based CPL switch activated by biaxial stretching, which enables flexible, dynamic anti-counterfeiting labels capable of decrypting preset information in specific polarization states. This work can provide new insights for the development of advanced chiral perovskite materials and their emerging applications in information encryption, flexible 3D displays, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Lin Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yufan Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| |
Collapse
|
5
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Ye Z, Li Z, Feng J, Wu C, Fan Q, Chen C, Chen J, Yin Y. Dual-Responsive Fe 3O 4@Polyaniline Chiral Superstructures for Information Encryption. ACS NANO 2023; 17:18517-18524. [PMID: 37669537 DOI: 10.1021/acsnano.3c06461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Incorporating stimuli-responsive mechanisms into chiral assemblies of nanostructures offers numerous opportunities to create optical materials capable of dynamically modulating their chiroptical properties. In this study, we demonstrate the formation of chiral superstructures by assembling Fe3O4@polyaniline hybrid nanorods by using a gradient magnetic field. The resulting superstructures exhibit a dual response to changes in both the magnetic field and solution pH, enabling dynamic regulation of the position, intensity, and sign of its circular dichroism peaks. Such responsiveness allows for convenient control over the optical rotatory dispersion properties of the assemblies, which are further integrated into the design of a chiroptical switch that can display various colors and patterns when illuminated with light of different wavelengths and polarization states. Finally, an optical information encryption system is constructed through the controlled assembly of the hybrid nanorods to showcase the potential opportunities for practical applications brought by the resulting responsive chiral superstructures.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jinxing Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|