1
|
Tolmachev DO, Fernée MJ, Shornikova EV, Siverin NV, Yakovlev DR, Van Avermaet H, Hens Z, Bayer M. Positive Trions in InP/ZnSe/ZnS Colloidal Nanocrystals. ACS NANO 2024; 18:9378-9388. [PMID: 38498768 DOI: 10.1021/acsnano.3c09971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
InP-based colloidal nanocrystals are being developed as an alternative to cadmium-based materials. However, their optical properties have not been widely studied. In this paper, the fundamental magneto-optical properties of InP/ZnSe/ZnS nanocrystals are investigated at cryogenic temperatures. Ensemble measurements using two-photon excitation spectroscopy revealed the band-edge hole state to have 1Sh symmetry, resolving some controversy on this issue. Single nanocrystal microphotoluminescence measurements provided increased spectral resolution that facilitated direct detection of the lowest energy confined acoustic phonon mode at 0.9 meV, which is several times smaller than the previously reported values for similar nanocrystals. Zeeman splitting of narrow spectral lines in a magnetic field indicated a bright trion emission. A simple trion model was used to identify a positive trion charge. Furthermore, the Zeeman split spectra allowed the direct measurement of both the electron and hole g-factors, which match existing theoretical predictions.
Collapse
Affiliation(s)
- Danil O Tolmachev
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Mark J Fernée
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Elena V Shornikova
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Nikita V Siverin
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Dmitri R Yakovlev
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Hannes Van Avermaet
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Manfred Bayer
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Rojas-Gatjens E, Li H, Vega-Flick A, Cortecchia D, Petrozza A, Bittner ER, Srimath Kandada AR, Silva-Acuña C. Many-Exciton Quantum Dynamics in a Ruddlesden-Popper Tin Iodide. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21194-21203. [PMID: 37937156 PMCID: PMC10626601 DOI: 10.1021/acs.jpcc.3c04896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/01/2023] [Indexed: 11/09/2023]
Abstract
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys.2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (<10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden-Popper metal halides (RPMHs) and links them to the exciton-exciton interaction strength and the static disorder aspect of the crystalline structure.
Collapse
Affiliation(s)
- Esteban Rojas-Gatjens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
| | - Hao Li
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Alejandro Vega-Flick
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
| | - Daniele Cortecchia
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Annamaria Petrozza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Eric R. Bittner
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ajay Ram Srimath Kandada
- Department
of Physics, Wake Forest University, Winston–Salem, North
Carolina 27587, United States
- Center
for Functional Materials, Wake Forest University, Winston–Salem, North
Carolina 27109, United States
| | - Carlos Silva-Acuña
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|