1
|
Özkan SG, Kimiaei A, Kaya AH, Pepeler MS, Özkan HA, Arat M. Turkish Hematologists’ Preferences for Related Donor Selection: Results of a Multicenter Survey. Turk J Haematol 2024; 41:182-187. [PMID: 38801065 PMCID: PMC11589365 DOI: 10.4274/tjh.galenos.2024.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a widely utilized treatment for various hematological diseases. While selection criteria for unrelated donors are well established, there is a lack of consistency and standardization in the selection of related donors. This study investigated the current approach of hematologists to the selection of related donors at Turkish HSCT centers. The study employed a cross-sectional survey design, distributing a self-administered questionnaire to 95 adult and pediatric transplantation centers in Türkiye to investigate their approaches to related donor selection for allo-HSCT. The questionnaire collected data on various topics including the center’s experience in performing allo-HSCT, patient groups treated, number of allo-HSCT procedures conducted between 2015 and 2021, preferences for related donors, considerations in related donor selection (such as sex and past pregnancies), guidelines utilized for related donor selection, upper age limit for related donors, and the use of specialized advanced analyses for elderly donors. The response rate to the survey was 38.9%. Variability was observed across centers in terms of sex consideration and the impact of past pregnancies on related female donor rejection. Different guidelines were employed for related donor selection, with the European Bone Marrow Transplantation guidelines being the most commonly used. Regarding the upper age limit for related donors, 8.1% of centers accepted an upper age limit of 55 years, 48.7% preferred an upper age limit of 65 years, and 43.2% selected related donors aged 65 and above. The lack of standardized guidelines for related donor selection in HSCT centers leads to variability in criteria and potential risks. Collaboration among centers is essential to establish consensus and develop standardized protocols.
Collapse
Affiliation(s)
- Sıdıka Gülkan Özkan
- Bahçeşehir University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, İstanbul, Türkiye
- Medical Park Göztepe Hospital, Adult Hematology and Bone Marrow Transplantation Unit, İstanbul, Türkiye
| | - Ali Kimiaei
- Bahçeşehir University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, İstanbul, Türkiye
| | - Ali Hakan Kaya
- Maltepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, İstanbul, Türkiye
- Medical Park Pendik Hospital, Clinic of Adult Hematology and Bone Marrow Transplantation Unit, İstanbul, Türkiye
| | | | - Hasan Atilla Özkan
- Bahçeşehir University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, İstanbul, Türkiye
- Medical Park Göztepe Hospital, Adult Hematology and Bone Marrow Transplantation Unit, İstanbul, Türkiye
| | - Mutlu Arat
- İstanbul Florence Nightingale Hospital Group, Hematopoietic Stem Cell Transplantation Unit, İstanbul, Türkiye
| |
Collapse
|
2
|
Cai CS, Lai WY, Liu PH, Chou TC, Liu RY, Lin CM, Gwo S, Hsu WT. Ultralow Auger-Assisted Interlayer Exciton Annihilation in WS 2/WSe 2 Moiré Heterobilayers. NANO LETTERS 2024; 24:2773-2781. [PMID: 38285707 PMCID: PMC10921466 DOI: 10.1021/acs.nanolett.3c04688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Transition metal dichalcogenide (TMD) heterobilayers have emerged as a promising platform for exploring solid-state quantum simulators and many-body quantum phenomena. Their type II band alignment, combined with the moiré superlattice, inevitably leads to nontrivial exciton interactions and dynamics. Here, we unveil the distinct Auger annihilation processes for delocalized interlayer excitons in WS2/WSe2 moiré heterobilayers. By fitting the characteristic efficiency droop and bimolecular recombination rate, we quantitatively determine an ultralow Auger coefficient of 1.3 × 10-5 cm2 s-1, which is >100-fold smaller than that of excitons in TMD monolayers. In addition, we reveal selective exciton upconversion into the WSe2 layer, which highlights the significance of intralayer electron Coulomb interactions in dictating the microscopic scattering pathways. The distinct Auger processes arising from spatial electron-hole separation have important implications for TMD heterobilayers while endowing interlayer excitons and their strongly correlated states with unique layer degrees of freedom.
Collapse
Affiliation(s)
- Cheng-Syuan Cai
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wei-Yan Lai
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Hsuan Liu
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzu-Chieh Chou
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ro-Ya Liu
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Ming Lin
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shangjr Gwo
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Ting Hsu
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
3
|
Cai H, Rasmita A, Tan Q, Lai JM, He R, Cai X, Zhao Y, Chen D, Wang N, Mu Z, Huang Z, Zhang Z, Eng JJH, Liu Y, She Y, Pan N, Miao Y, Wang X, Liu X, Zhang J, Gao W. Interlayer donor-acceptor pair excitons in MoSe 2/WSe 2 moiré heterobilayer. Nat Commun 2023; 14:5766. [PMID: 37723156 PMCID: PMC10507070 DOI: 10.1038/s41467-023-41330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Localized interlayer excitons (LIXs) in two-dimensional moiré superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree with the experimental photoluminescence spectra of LIX in the moiré MoSe2/WSe2 heterobilayer. In particular, we find that the emission energy-lifetime correlation and the nonmonotonic power dependence of the lifetime agree well with the DAP IX model. Our results provide insight into the physical mechanism of LIX formation in moiré heterostructures and pave new directions for engineering interlayer exciton properties in moiré superlattices.
Collapse
Affiliation(s)
- Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jia-Min Lai
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruihua He
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yan Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Disheng Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Naizhou Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhao Mu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zumeng Huang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhaowei Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - John J H Eng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuanda Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yongzhi She
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Nan Pan
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiaoping Wang
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore.
- Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore.
| |
Collapse
|