1
|
Tan H, Wang S, He X, Yang G, Zhu Y, Yang S, Yan S, Gong C, Bai W, Hu Y, Song J, Zheng L. Microneedles Loaded with Nitric-Oxide Driven Nanomotors Improve Force-Induced Efferocytosis Impairment and Sterile Inflammation by Revitalizing Macrophage Energy Metabolism. ACS NANO 2025; 19:9390-9411. [PMID: 40025734 DOI: 10.1021/acsnano.5c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Mechanical force initiates sterile inflammation, a process implicated in diverse physiological and pathological processes. The timely clearance of apoptotic cells by macrophages via efferocytosis is crucial for the proper resolution of sterile inflammation and for averting excessive tissue damage. Despite this, the specific role and underlying mechanisms of mechanical force on macrophage efferocytosis remain obscure. By integrating bioinformatics and metabolomics analyses, we uncovered how mechanical force disrupts the "arginine metabolism─TCA cycle─mitochondrial function" metabolic cascade, thereby impairing macrophage efferocytosis and intensifying sterile inflammation. Notably, we discovered that elevating l-arginine levels can ameliorate these crises by restoring energy metabolism. Leveraging this insight, we engineered a microneedle drug delivery system loaded with nitric-oxide driven nanomotors (MSN-LA@MNs) for targeted delivery of l-arginine. The active component, MSN-LA, exploits the heightened expression of inducible nitric oxide synthase (iNOS) in force-loaded tissues as a chemoattractant, harnessing NO generated from iNOS-catalyzed l-arginine for autonomous propulsion. In a force-induced rat orthodontic tooth movement (OTM) model, we confirmed that MSN-LA@MNs enhance macrophage efferocytosis and, under iNOS guidance, dynamically modulate sterile inflammation levels in OTM, thus facilitating the OTM process. Collectively, our findings elucidate previously unclear mechanistic links between force, macrophage efferocytosis, and sterile inflammation from a metabolic vantage point, offering a promising targeted strategy for modulating force-related biological processes such as OTM.
Collapse
Affiliation(s)
- Hao Tan
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Shan Wang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Xinyi He
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Guoyin Yang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Ye Zhu
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Sihan Yang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Shengnan Yan
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Chu Gong
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Wenya Bai
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Yun Hu
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Jinlin Song
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Leilei Zheng
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
2
|
Yan T, Li H, Yan J, Ma S, Tan J. Age-related mitophagy regulates orthodontic tooth movement by affecting PDLSCs mitochondrial function and RANKL/OPG. FASEB J 2024; 38:e23865. [PMID: 39096136 DOI: 10.1096/fj.202401280r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.
Collapse
Affiliation(s)
- Tong Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huilin Li
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiayin Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Siyuan Ma
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiali Tan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zhang Y, Yan J, Zhang Y, Liu H, Han B, Li W. Age-related alveolar bone maladaptation in adult orthodontics: finding new ways out. Int J Oral Sci 2024; 16:52. [PMID: 39085217 PMCID: PMC11291511 DOI: 10.1038/s41368-024-00319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Compared with teenage patients, adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment, indicating the maladaptation of alveolar bone homeostasis under orthodontic force. However, this phenomenon is not well-elucidated to date, leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics. Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue, this review summarizes the current evidence and underlying mechanisms. The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism, thus hindering alveolar bone reconstruction during orthodontic treatment. To this end, periodontal surgery, physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism. We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jiale Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
4
|
He L, Zhang W, Liu J, Pan Y, Li S, Xie Y. Applications of nanotechnology in orthodontics: a comprehensive review of tooth movement, antibacterial properties, friction reduction, and corrosion resistance. Biomed Eng Online 2024; 23:72. [PMID: 39054528 PMCID: PMC11270802 DOI: 10.1186/s12938-024-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Nanotechnology has contributed important innovations to medicine and dentistry, and has also offered various applications to the field of orthodontics. Intraoral appliances must function in a complex environment that includes digestive enzymes, a diverse microbiome, mechanical stress, and fluctuations of pH and temperature. Nanotechnology can improve the performance of orthodontic brackets and archwires by reducing friction, inhibiting bacterial growth and biofilm formation, optimizing tooth remineralization, improving corrosion resistance and biocompatibility of metal substrates, and accelerating or decelerating orthodontic tooth movement through the application of novel nanocoatings, nanoelectromechanical systems, and nanorobots. This comprehensive review systematically explores the orthodontic applications of nanotechnology, particularly its impacts on tooth movement, antibacterial activity, friction reduction, and corrosion resistance. A search across PubMed, the Web of Science Core Collection, and Google Scholar yielded 261 papers, of which 28 met our inclusion criteria. These selected studies highlight the significant benefits of nanotechnology in orthodontic devices. Recent clinical trials demonstrate that advancements brought by nanotechnology may facilitate the future delivery of more effective and comfortable orthodontic care.
Collapse
Affiliation(s)
- Longwen He
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Wenzhong Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Junfeng Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yuemei Pan
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yueqiang Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Zamanian MY, Golmohammadi M, Vadiyan FV, Almulla AA, Vadiyan DE, Morozova NS, Alkadir OKA, Kareem AH, Alijani M. A narrative review of the effects of vitamin D3 on orthodontic tooth movement: Focus on molecular and cellular mechanisms. Food Sci Nutr 2024; 12:3164-3176. [PMID: 38726436 PMCID: PMC11077251 DOI: 10.1002/fsn3.4035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 05/12/2024] Open
Abstract
Orthodontic tooth movement (OTM) is a critical process in dental alignment, driven by the application of calibrated orthodontic forces. This study delves into the intricate molecular and cellular mechanisms by which vitamin D3 influences OTM. Vitamin D3 is identified as a critical regulator in bone metabolism, enhancing osteoblast activity and bone formation while also modulating osteoclast quantity and RANKL expression, essential for the remodeling of the alveolar bone. The precise mechanisms through which vitamin D3 facilitates these processes are explored, highlighting its potential in accelerating bone remodeling and, consequently, tooth alignment. This comprehensive review underscores vitamin D3's anabolic impact on bone metabolism and its pivotal role in the synthesis and mineralization processes governed by osteoblasts. The findings illuminate vitamin D3's promise in augmenting orthodontic therapy, suggesting its utility in improving treatment efficiency and reducing duration. However, the need for further research into the optimal application of vitamin D3 in orthodontics is emphasized, particularly concerning dosage, timing, and delivery methods.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Filipp V. Vadiyan
- Department of Therapeutic Dentistry, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | - Diana E. Vadiyan
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | - Natalia S. Morozova
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | | | - Mojtaba Alijani
- Department of Orthodontics, School of DentistryHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
6
|
Zhang H, Zhang Y. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2023; 17:123. [PMID: 38203977 PMCID: PMC10780056 DOI: 10.3390/ma17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Over the past decade, there has been a significant surge in interest in flexible mechanical force sensing devices and systems. Tremendous efforts have been devoted to the development of flexible mechanical force sensors for daily healthcare and medical diagnosis, driven by the increasing demand for wearable/portable devices in long-term healthcare and precision medicine. In this review, we summarize recent advances in diverse categories of flexible mechanical force sensors, covering piezoresistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and other force sensors. This review focuses on their working principles, design strategies and applications in healthcare and diagnosis, with an emphasis on the interplay among the sensor architecture, performance, and application scenario. Finally, we provide perspectives on the remaining challenges and opportunities in this field, with particular discussions on problem-driven force sensor designs, as well as developments of novel sensor architectures and intelligent mechanical force sensing systems.
Collapse
Affiliation(s)
- Hang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|