1
|
Niu Z, Shan W, Wang X, Zhang X, Shi A, Zhang Y, Niu X. Single-Elemental Seamless Metal-Semiconductor Junctions Based on 2D Bi or Sb: Carrier Transport and Ultrafast Dynamics Study. J Phys Chem Lett 2025; 16:4057-4065. [PMID: 40233198 DOI: 10.1021/acs.jpclett.5c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Two-dimensional (2D) metal-semiconductor (MS) junctions with their atomically thin nature are crucial for nanoelectronics. However, van der Waals (vdW) junctions face interfacial tunneling barriers, and lateral junctions suffer from chemical bonding disorders, both limiting carrier transport. Herein, based on the layer-dependent semiconductor-to-semimetal transition in 2D bismuthene (Bi) and antimonene (Sb), lateral seamless MS junctions with native chemical bonds are constructed to inhibit tunneling barriers and produce high-quality interfaces. These coherent junctions exhibit superior transport properties, yielding a significant current response at moderate bias as continuous covalent bonding removes vdW gaps and defects. In optoelectronic applications, the photogenerated carrier lifetimes in Bi and Sb reach 61.62 and 286.16 ns owing to weak electron-phonon coupling. Furthermore, the transport and optoelectronic properties of these MS junctions exhibit superior environmental resistance, while O2-induced trap states in Sb enhance photoconductive gain. This work provides a theoretical foundation for designing high-performance electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Zifan Niu
- School of Science, and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wenchao Shan
- School of Science, and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinxin Wang
- School of Physics and Engineering, and Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiuyun Zhang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Anqi Shi
- School of Science, and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Ying Zhang
- School of Science, and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xianghong Niu
- School of Science, and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Kim SY, Sun Z, Roy J, Wang X, Chen Z, Appenzeller J, Wallace RM. Fundamental Understanding of Interface Chemistry and Electrical Contact Properties of Bi and MoS 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54790-54798. [PMID: 39316070 DOI: 10.1021/acsami.4c10082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The interface properties and thermal stability of bismuth (Bi) contacts on molybdenum disulfide (MoS2) shed light on their behavior under various deposition conditions and temperatures. The examination involves extensive techniques including X-ray photoelectron spectroscopy, scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS). Bi contacts formed a van der Waals interface on MoS2 regardless of deposition conditions, such as ultrahigh vacuum (UHV, 3 × 10-11 mbar) and high vacuum (HV, 4 × 10-6 mbar), while the oxidation on MoS2 has been observed. However, the semimetallic properties of Bi suppress the impact of defect states, including oxidized-MoS2 and vacancies. Notably, the n-type characteristic of Bi/MoS2 remains unaffected, and no significant changes in the local density of states near the conduction band minimum are observed despite the presence of defects detected by STM and STS. As a result, the Fermi level (EF) resides below the conduction band of MoS2. The study also examines the impact of annealing on the contact interface, revealing no interface reaction between Bi and MoS2 up to 300 °C. These findings enhance our understanding of semimetal (Bi) contacts on MoS2, with implications for improving the performance and reliability of electronic devices.
Collapse
Affiliation(s)
- Seong Yeoul Kim
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zheng Sun
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joy Roy
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Xinglu Wang
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zhihong Chen
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joerg Appenzeller
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert M Wallace
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Hoang L, Jaikissoon M, Köroğlu Ç, Zhang Z, Bennett RKA, Song JH, Yang JA, Ko JS, Brongersma ML, Saraswat KC, Pop E, Mannix AJ. Understanding the Impact of Contact-Induced Strain on the Electrical Performance of Monolayer WS 2 Transistors. NANO LETTERS 2024; 24. [PMID: 39365938 PMCID: PMC11488502 DOI: 10.1021/acs.nanolett.4c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024]
Abstract
Two-dimensional (2D) electronics require low contact resistance (RC) to approach their fundamental limits. WS2 is a promising 2D semiconductor that is often paired with Ni contacts, but their operation is not well understood considering the nonideal alignment between the Ni work function and the WS2 conduction band. Here, we investigate the effects of contact size on nanoscale monolayer WS2 transistors and uncover that Ni contacts impart stress, which affects the WS2 device performance. The strain applied to the WS2 depends on contact size, where long (1 μm) contacts (RC ≈ 1.7 kΩ·μm) show a 78% reduction in RC compared to shorter (0.1 μm) contacts (RC ≈ 7.8 kΩ·μm). We also find that thermal annealing can relax the WS2 strain in long-contact devices, increasing RC to 8.5 kΩ·μm. These results reveal that thermo-mechanical phenomena can significantly influence 2D semiconductor-metal contacts, presenting opportunities to optimize device performance through nanofabrication and thermal budget.
Collapse
Affiliation(s)
- Lauren Hoang
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Marc Jaikissoon
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Çağıl Köroğlu
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhepeng Zhang
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Robert K. A. Bennett
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jung-Hwan Song
- Geballe Laboratory
for Advanced Materials, Stanford University, Stanford, California 94305, United States
| | - Jerry A. Yang
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jung-Soo Ko
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Mark L. Brongersma
- Geballe Laboratory
for Advanced Materials, Stanford University, Stanford, California 94305, United States
| | - Krishna C. Saraswat
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Eric Pop
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Andrew J. Mannix
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Stanford
Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
Chen J, Sun MY, Wang ZH, Zhang Z, Zhang K, Wang S, Zhang Y, Wu X, Ren TL, Liu H, Han L. Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor. NANO-MICRO LETTERS 2024; 16:264. [PMID: 39120835 PMCID: PMC11315877 DOI: 10.1007/s40820-024-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) allow for atomic-scale manipulation, challenging the conventional limitations of semiconductor materials. This capability may overcome the short-channel effect, sparking significant advancements in electronic devices that utilize 2D TMDs. Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance. This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor. It delves into the impacts of miniaturization, including the reduction of channel length, gate length, source/drain contact length, and dielectric thickness on transistor operation and performance. In addition, this review provides a detailed analysis of performance parameters such as source/drain contact resistance, subthreshold swing, hysteresis loop, carrier mobility, on/off ratio, and the development of p-type and single logic transistors. This review details the two logical expressions of the single 2D-TMD logic transistor, including current and voltage. It also emphasizes the role of 2D TMD-based transistors as memory devices, focusing on enhancing memory operation speed, endurance, data retention, and extinction ratio, as well as reducing energy consumption in memory devices functioning as artificial synapses. This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices. This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications. It underscores the anticipated challenges, opportunities, and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
- BNRist, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ming-Yuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Zhen-Hua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Kai Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China
| | - Xiaoming Wu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, People's Republic of China.
| |
Collapse
|
5
|
Mamedov D, Karazhanov SZ, Alonso-Vante N. Fermi level pinning in metal oxides: influence on photocatalysis and photoelectrochemistry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:413001. [PMID: 38942001 DOI: 10.1088/1361-648x/ad5d3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Photocatalysis and photoelectrochemical (PEC) reactions are complex processes involving both the physical properties and surface chemistry of the semiconductor photocatalyst. Their interplay applies specific limitations on the performance of different materials in light-driven reactions, often despite their optimal band structure and optical absorption. One of the ways to properly characterize the photocatalytic and PEC properties of semiconductors remains the measurement of the photopotential, which characterizes a driving force of photoinduced processes in the material. In this work, we give a general scope on the photopotential in PEC reactions that finds its origin in semiconductor physics. It is shown that the photopotential does not always play an interchangeable role with the photocurrent in comparative analysis of the photocatalytic performance of different materials. Furthermore, a correlation between the photopotential and the kinetics of methylene blue dye photocatalysis is shown for anatase-TiO2, CeO2and WO3as photocatalysts. Fermi level pinning (FLP) in the bandgap of CeO2is observed limiting the photoactivity of the compound, which is attributed to the high defectivity of CeO2. A short review is given on the possible origins of FLP in metal oxides and ways to overcome it. It is pointed out that the shift of the Fermi level after illumination of CeO2can trigger the chemical instability of the material accompanied by the FLP process.
Collapse
Affiliation(s)
- D Mamedov
- IC2MP, UMR-CNRS 7285, University of Poitiers, 4 rue Michel Brunet, 86072 Poitiers, France
| | - S Zh Karazhanov
- Department for Solar Energy, Institute for Energy Technology, Instituttveien 18, 2027 Kjeller, Norway
| | - N Alonso-Vante
- IC2MP, UMR-CNRS 7285, University of Poitiers, 4 rue Michel Brunet, 86072 Poitiers, France
| |
Collapse
|
6
|
Zhou M, Zhu W, Bao S, Zhou J, Yu Y, Zhang Q, Ren C, Li Z, Deng Y. Localized Surface Doping Induced Ultralow Contact Resistance between Metal and (Bi,Sb) 2Te 3 Thermoelectric Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35815-35824. [PMID: 38935440 DOI: 10.1021/acsami.4c06713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Micro thermoelectric devices are expected to further improve the cooling density for the temperature control of electronic devices; nevertheless, the high contact resistivity between metals and semiconductors critically limits their applications, especially in chip cooling with extremely high heat flux. Herein, based on the calculated results, a low specific contact resistivity of ∼10-7 Ω cm2 at the interface is required to guarantee a desirable cooling power density of micro devices. Thus, we developed a generally applicable interfacial modulation strategy via localized surface doping of thermoelectric films, and the feasibility of such a doping approach for both n/p-type (Bi,Sb)2Te3 films was demonstrated, which can effectively increase the surface-majority carrier concentration explained by the charge transfer mechanism. With a proper doping level, ultralow specific contact resistivities at the interfaces are obtained for n-type (6.71 × 10-8 Ω cm2) and p-type (3.70 × 10-7 Ω cm2) (Bi,Sb)2Te3 layers, respectively, which is mainly attributed to the carrier tunneling enhancement with a narrowed interfacial contact barrier width. This work provides an effective scheme to further reduce the internal resistance of micro thermoelectric coolers, which can also be extended as a kind of universal interfacial modification technique for micro semiconductor devices.
Collapse
Affiliation(s)
- Man Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wei Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province (2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou 310052, China
| | - Shucheng Bao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jie Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuedong Yu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Qingqing Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province (2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou 310052, China
| | - Chaojie Ren
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhi Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuan Deng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province (2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou 310052, China
| |
Collapse
|
7
|
Ma L, Wang Y, Liu Y. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chem Rev 2024; 124:2583-2616. [PMID: 38427801 DOI: 10.1021/acs.chemrev.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as highly promising candidates for next-generation electronics owing to their atomically thin structures and surfaces devoid of dangling bonds. However, establishing high-quality metal contacts with TMDs presents a critical challenge, primarily attributed to their ultrathin bodies and delicate lattices. These distinctive characteristics render them susceptible to physical damage and chemical reactions when conventional metallization approaches involving "high-energy" processes are implemented. To tackle this challenge, the concept of van der Waals (vdW) contacts has recently been proposed as a "low-energy" alternative. Within the vdW geometry, metal contacts can be physically laminated or gently deposited onto the 2D channel of TMDs, ensuring the formation of atomically clean and electronically sharp contact interfaces while preserving the inherent properties of the 2D TMDs. Consequently, a considerable number of vdW contact devices have been extensively investigated, revealing unprecedented transport physics or exceptional device performance that was previously unachievable. This review presents recent advancements in vdW contacts for TMD transistors, discussing the merits, limitations, and prospects associated with each device geometry. By doing so, our purpose is to offer a comprehensive understanding of the current research landscape and provide insights into future directions within this rapidly evolving field.
Collapse
Affiliation(s)
- Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Wang X, Hu Y, Kim SY, Cho K, Wallace RM. Mechanism of Fermi Level Pinning for Metal Contacts on Molybdenum Dichalcogenide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13258-13266. [PMID: 38422472 DOI: 10.1021/acsami.3c18332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The high contact resistance of transition metal dichalcogenide (TMD)-based devices is receiving considerable attention due to its limitation on electronic performance. The mechanism of Fermi level (EF) pinning, which causes the high contact resistance, is not thoroughly understood to date. In this study, the metal (Ni and Ag)/Mo-TMD surfaces and interfaces are characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning tunneling microscopy and spectroscopy, and density functional theory systematically. Ni and Ag form covalent and van der Waals (vdW) interfaces on Mo-TMDs, respectively. Imperfections are detected on Mo-TMDs, which lead to electronic and spatial variations. Gap states appear after the adsorption of single and two metal atoms on Mo-TMDs. The combination of the interface reaction type (covalent or vdW), the imperfection variability of the TMD materials, and the gap states induced by contact metals with different weights are concluded to be the origins of EF pinning.
Collapse
Affiliation(s)
- Xinglu Wang
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| | - Yaoqiao Hu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| | - Seong Yeoul Kim
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| | - Kyeongjae Cho
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| | - Robert M Wallace
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| |
Collapse
|
9
|
Park J, Lee S, Jafter OF, Cheon J, Lungerich D. Electron beam-induced demetallation of Fe, Co, Ni, Cu, Zn, Pd, and Pt metalloporphyrins: insights in e-beam chemistry and metal cluster formations. Phys Chem Chem Phys 2024; 26:8051-8061. [PMID: 38314818 DOI: 10.1039/d3cp05848d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Electron beams are versatile tools for nanoscale fabrication processes, however, the underlying e-beam chemistry remains in its infancy. Through operando transmission electron microscopy investigations, we elucidate a redox-driven cargo release of individual metal atoms triggered by electron beams. The chosen organic delivery molecule, tetraphenylporphyrin (TPP), proves highly versatile, forming complexes with nearly all metals from the periodic table and being easily processed in solution. A comprehensive cinematographic analysis of the dynamics of single metal atoms confirms the nearly instantaneous ejection of complexed metal atoms under an 80 kV electron beam, underscoring the system's broad versatility. Providing mechanistic insights, we employ density functional theory to support the proposed reductive demetallation pathway facilitated by secondary electrons, contributing novel perspectives to electron beam-mediated chemical reaction mechanisms. Lastly, our findings demonstrate that all seven metals investigated form nanoclusters once ejected from TPP, highlighting the method's potential for studying and developing sustainable single-atom and nanocluster catalysts.
Collapse
Affiliation(s)
- Jongseong Park
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sol Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Orein Francis Jafter
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Laukkanen P, Punkkinen M, Kuzmin M, Kokko K, Liu X, Radfar B, Vähänissi V, Savin H, Tukiainen A, Hakkarainen T, Viheriälä J, Guina M. Bridging the gap between surface physics and photonics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:044501. [PMID: 38373354 DOI: 10.1088/1361-6633/ad2ac9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Use and performance criteria of photonic devices increase in various application areas such as information and communication, lighting, and photovoltaics. In many current and future photonic devices, surfaces of a semiconductor crystal are a weak part causing significant photo-electric losses and malfunctions in applications. These surface challenges, many of which arise from material defects at semiconductor surfaces, include signal attenuation in waveguides, light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells, leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance. To reduce harmful surface effects, the optical and electrical passivation of devices has been developed for several decades, especially with the methods of semiconductor technology. Because atomic scale control and knowledge of surface-related phenomena have become relevant to increase the performance of different devices, it might be useful to enhance the bridging of surface physics to photonics. Toward that target, we review some evolving research subjects with open questions and possible solutions, which hopefully provide example connecting points between photonic device passivation and surface physics. One question is related to the properties of the wet chemically cleaned semiconductor surfaces which are typically utilized in device manufacturing processes, but which appear to be different from crystalline surfaces studied in ultrahigh vacuum by physicists. In devices, a defective semiconductor surface often lies at an embedded interface formed by a thin metal or insulator film grown on the semiconductor crystal, which makes the measurements of its atomic and electronic structures difficult. To understand these interface properties, it is essential to combine quantum mechanical simulation methods. This review also covers metal-semiconductor interfaces which are included in most photonic devices to transmit electric carriers to the semiconductor structure. Low-resistive and passivated contacts with an ultrathin tunneling barrier are an emergent solution to control electrical losses in photonic devices.
Collapse
Affiliation(s)
- Pekka Laukkanen
- Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Marko Punkkinen
- Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Mikhail Kuzmin
- Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Kalevi Kokko
- Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Xiaolong Liu
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Behrad Radfar
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Ville Vähänissi
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Hele Savin
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Antti Tukiainen
- Optoelectronics Research Centre, Tampere University, Tampere, Finland
| | - Teemu Hakkarainen
- Optoelectronics Research Centre, Tampere University, Tampere, Finland
| | - Jukka Viheriälä
- Optoelectronics Research Centre, Tampere University, Tampere, Finland
| | - Mircea Guina
- Optoelectronics Research Centre, Tampere University, Tampere, Finland
| |
Collapse
|