1
|
Liu X, Huang R, Peng L, Yang J, Yan J, Zhai B, Luo Y, Zhang C, Tan S, Liu X, Ding L, Fang Y. Interfacially Fabricated Covalent Organic Framework Membranes for Film-Based Fluorescence Humidity Sensors and Moisture Driven Actuators. Angew Chem Int Ed Engl 2025; 64:e202414472. [PMID: 39292509 DOI: 10.1002/anie.202414472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
Rapid, on-site measurement of ppm-level humidity in real time remains a challenge. In this work, we fabricated a few micrometer thick, β-ketoenamine-linked covalent organic framework (COF) membrane via interfacially confined condensation of 1,3,5-tris-(4-aminophenyl)triazine (TTA) with 1,3,5-tri-formylphloroglucinol (TP). Based on the super-sensitive and reversible response of the COF membrane to water vapor, we developed a high-performance film-based fluorescence humidity sensor, depicting unprecedented detection limit of 0.005 ppm, fast response/recovery (2.2 s/2.0 s), and a detection range from 0.005 to 100 ppm. Remarkably, more than 7,000-time continuous tests showed no observable change in the performance of the sensor. The applicability of the sensor was verified by on-site and real-time monitoring of humidity in a glovebox. The superior performance of the sensor was ascribed to the highly porous structure and unique affinity of the COF membrane to water molecules as they enable fast mass transfer and efficient utilization of the water binding sites. Moreover, based on the remarkable moisture driven deformation of the COF membrane and its composition with the known polyimide films, some conceptual actuators were created. This study brings new ideas to the design of ultra-sensitive film-based fluorescent sensors (FFSs) and high-performance actuators.
Collapse
Affiliation(s)
- Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junbao Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuwen Tan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Chen X, Zhang T, Liu H, Zang J, Lv C, Du M, Zhao G. Shape-Anisotropic Assembly of Protein Nanocages with Identical Building Blocks by Designed Intermolecular π-π Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305398. [PMID: 37870198 PMCID: PMC10724428 DOI: 10.1002/advs.202305398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Indexed: 10/24/2023]
Abstract
Protein lattices that shift the structure and shape anisotropy in response to environmental cues are closely coupled to potential functionality. However, to design and construct shape-anisotropic protein arrays from the same building blocks in response to different external stimuli remains challenging. Here, by a combination of the multiple, symmetric interaction sites on the outer surface of protein nanocages and the tunable features of phenylalanine-phenylalanine interactions, a protein engineering approach is reported to construct a variety of superstructures with shape anisotropy, including 3D cubic, 2D hexagonal layered, and 1D rod-like crystalline protein nanocage arrays by using one single protein building block. Notably, the assembly of these crystalline protein arrays is reversible, which can be tuned by external stimuli (pH and ionic strength). The anisotropic morphologies of the fabricated macroscopic crystals can be correlated with the Å-to-nm scale protein arrangement details by crystallographic elucidation. These results enhance the understanding of the freedom offered by an object's symmetry and inter-object π-π stacking interactions for protein building blocks to assemble into direction- and shape-anisotropic biomaterials.
Collapse
Affiliation(s)
- Xuemin Chen
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| | - Tuo Zhang
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| | - Hanxiong Liu
- School of Food Science and TechnologyNational Engineering Research Center of SeafoodDalian Polytechnic UniversityDalian116034China
| | - Jiachen Zang
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| | - Chenyan Lv
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| | - Ming Du
- School of Food Science and TechnologyNational Engineering Research Center of SeafoodDalian Polytechnic UniversityDalian116034China
| | - Guanghua Zhao
- College of Food Science & Nutritional EngineeringBeijing Key Laboratory of Functional Food from Plant ResourcesChina Agricultural UniversityBeijing100083China
| |
Collapse
|
3
|
Su X, Dong Z, Wu J, Chi D, Loh XJ. Celebrating 25 Years of IMRE: Research Highlights on Nanomaterials and Nanotechnologies. ACS NANO 2022; 16:11492-11497. [PMID: 35904455 DOI: 10.1021/acsnano.2c06830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Science and Engineering Research Council (SERC), Agency for Science, Technology and Research (A*STAR). IMRE was established in September 1997. Over the past 25 years, IMRE has developed core competencies and interdisciplinary teams for material development from fundamental discoveries to industrial translation. Currently, with over 400 researchers and state-of-the-art research facilities, IMRE conducts world class research in important material and material technology fields, including polymer composites, optical materials, electronic materials, soft materials, structural materials, energy materials, biomaterials, quantum technologies, as well as advanced characterization. As a material-centered research institute in Singapore, IMRE has played important roles in pushing science boundaries and developing cutting-edge technologies. One of the key strategies is to partner international organizations, research institutes, and industry to fulfill its vision to be a leading research institute to accelerate materials research, moving from "Made in Singapore" toward "Created in Singapore".
Collapse
Affiliation(s)
- Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Department of Chemistry, National University of Singapore, 9 Engineering Drive 1, Singapore 117543
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
| | - Jing Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Dongzhi Chi
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| |
Collapse
|
4
|
Zhang X, Zhang T, Wang Y, Liu Y, Zang J, Zhao G. Reversible structure transformation between protein nanocages and nanorods controlled by small molecules. Chem Commun (Camb) 2021; 57:12996-12999. [PMID: 34796885 DOI: 10.1039/d1cc04510e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Constructing different protein nanostructures by using identical building blocks, while realizing their structural transformation in response to external stimuli, remains a challenge. Here, we fabricated protein nanocages and nanorods by using dimeric TmFtn as a building block and reacting with Mg2+/(α, L-lysine) with polymerization degrees of 9 (PLL9) and 15 (PLL15), respectively. Notably, the reversible shape transformation of these two supramolecular protein architectures with different dimensions can be achievable in response to external stimuli.
Collapse
Affiliation(s)
- Xiaorong Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Yingjie Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Yu Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
5
|
Bouzin M, Zeynali A, Marini M, Sironi L, Scodellaro R, D’Alfonso L, Collini M, Chirico G. Multiphoton Laser Fabrication of Hybrid Photo-Activable Biomaterials. SENSORS 2021; 21:s21175891. [PMID: 34502787 PMCID: PMC8433654 DOI: 10.3390/s21175891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
The possibility to shape stimulus-responsive optical polymers, especially hydrogels, by means of laser 3D printing and ablation is fostering a new concept of “smart” micro-devices that can be used for imaging, thermal stimulation, energy transducing and sensing. The composition of these polymeric blends is an essential parameter to tune their properties as actuators and/or sensing platforms and to determine the elasto-mechanical characteristics of the printed hydrogel. In light of the increasing demand for micro-devices for nanomedicine and personalized medicine, interest is growing in the combination of composite and hybrid photo-responsive materials and digital micro-/nano-manufacturing. Existing works have exploited multiphoton laser photo-polymerization to obtain fine 3D microstructures in hydrogels in an additive manufacturing approach or exploited laser ablation of preformed hydrogels to carve 3D cavities. Less often, the two approaches have been combined and active nanomaterials have been embedded in the microstructures. The aim of this review is to give a short overview of the most recent and prominent results in the field of multiphoton laser direct writing of biocompatible hydrogels that embed active nanomaterials not interfering with the writing process and endowing the biocompatible microstructures with physically or chemically activable features such as photothermal activity, chemical swelling and chemical sensing.
Collapse
Affiliation(s)
- Margaux Bouzin
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Amirbahador Zeynali
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Mario Marini
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Laura Sironi
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Riccardo Scodellaro
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Laura D’Alfonso
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Maddalena Collini
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
- Institute for Applied Sciences and Intelligent Systems, CNR, 80078 Pozzuoli, Italy
- Correspondence: (M.C.); (G.C.)
| | - Giuseppe Chirico
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
- Institute for Applied Sciences and Intelligent Systems, CNR, 80078 Pozzuoli, Italy
- Correspondence: (M.C.); (G.C.)
| |
Collapse
|
6
|
Zhang X, Liu Y, Zheng B, Zang J, Lv C, Zhang T, Wang H, Zhao G. Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials. Nat Commun 2021; 12:4849. [PMID: 34381032 PMCID: PMC8357837 DOI: 10.1038/s41467-021-25199-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023] Open
Abstract
Although various artificial protein nanoarchitectures have been constructed, controlling the transformation between different protein assemblies has largely been unexplored. Here, we describe an approach to realize the self-assembly transformation of dimeric building blocks by adjusting their geometric arrangement. Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer; twelve of these dimers interact with each other in a head-to-side manner to generate 24-meric hollow protein nanocage in the presence of Ca2+ or PEG. By tuning two contiguous dimeric proteins to interact in a fully or partially side-by-side fashion through protein interface redesign, we can render the self-assembly transformation of such dimeric building blocks from the protein nanocage to filament, nanorod and nanoribbon in response to multiple external stimuli. We show similar dimeric protein building blocks can generate three kinds of protein materials in a manner that highly resembles natural pentamer building blocks from viral capsids that form different protein assemblies.
Collapse
Affiliation(s)
- Xiaorong Zhang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Yu Liu
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Bowen Zheng
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Jiachen Zang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Chenyan Lv
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Tuo Zhang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Hongfei Wang
- grid.163032.50000 0004 1760 2008Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Guanghua Zhao
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| |
Collapse
|
7
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
8
|
Ma ZC, Zhang YL, Han B, Hu XY, Li CH, Chen QD, Sun HB. Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun 2020; 11:4536. [PMID: 32913189 PMCID: PMC7484797 DOI: 10.1038/s41467-020-18117-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Natural musculoskeletal systems have been widely recognized as an advanced robotic model for designing robust yet flexible microbots. However, the development of artificial musculoskeletal systems at micro-nanoscale currently remains a big challenge, since it requires precise assembly of two or more materials of distinct properties into complex 3D micro/nanostructures. In this study, we report femtosecond laser programmed artificial musculoskeletal systems for prototyping 3D microbots, using relatively stiff SU-8 as the skeleton and pH-responsive protein (bovine serum albumin, BSA) as the smart muscle. To realize the programmable integration of the two materials into a 3D configuration, a successive on-chip two-photon polymerization (TPP) strategy that enables structuring two photosensitive materials sequentially within a predesigned configuration was proposed. As a proof-of-concept, we demonstrate a pH-responsive spider microbot and a 3D smart micro-gripper that enables controllable grabbing and releasing. Our strategy provides a universal protocol for directly printing 3D microbots composed of multiple materials.
Collapse
Affiliation(s)
- Zhuo-Chen Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Bing Han
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Xin-Yu Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Chun-He Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Beijing, 100084, China.
| |
Collapse
|
9
|
Jia H, Litschel T, Heymann M, Eto H, Franquelim HG, Schwille P. Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906259. [PMID: 32105403 DOI: 10.1002/smll.201906259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Thomas Litschel
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| |
Collapse
|
10
|
Lay CL, Koh CSL, Lee YH, Phan-Quang GC, Sim HYF, Leong SX, Han X, Phang IY, Ling XY. Two-Photon-Assisted Polymerization and Reduction: Emerging Formulations and Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10061-10079. [PMID: 32040295 DOI: 10.1021/acsami.9b20911] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-photon lithography (TPL) is an emerging approach to fabricate complex multifunctional micro/nanostructures. This is because TPL can easily develop various 2D and 3D structures on a variety of surfaces, and there has been a rapidly expanding pool of processable photoresists to create different materials. However, challenges in developing two-photon processable photoresists currently impede progress in TPL. In this review, we critically discuss the importance of photoresist formulation in TPL. We begin by evaluating the commercial photoresists to design micro/nanostructures for promising applications in anti-counterfeiting, superomniphobicity, and micromachines with movable parts. Next, we discuss emerging hydrogel/organogel photoresists, focusing on customizing photoresist formulations to fabricate reconfigurable structures that can respond to changes in local pH, solvent, and temperature. We also review the development of metal salt-based photoresists for direct metal writing, whereby various formulations have been developed to enable applications in online sensing, catalysis, and electronics. Finally, we provide a critical outlook and highlight various outstanding challenges in formulating processable photoresists for TPL.
Collapse
Affiliation(s)
- Chee Leng Lay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yih Hong Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Gia Chuong Phan-Quang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Howard Yi Fan Sim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shi Xuan Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - In Yee Phang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
11
|
Serien D, Sugioka K. Three-Dimensional Printing of Pure Proteinaceous Microstructures by Femtosecond Laser Multiphoton Cross-Linking. ACS Biomater Sci Eng 2020; 6:1279-1287. [PMID: 33464859 DOI: 10.1021/acsbiomaterials.9b01619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laser direct write (LDW) is a promising three-dimensional (3D) printing technology for creating proteinaceous microstructures in which the proteins retain their original function, enabling the manufacture of complex biomimetic 3D microenvironments and versatile enhancement of medical microdevices. A photoactivator has commonly been used to date in the laser direct write of proteins to enhance the cross-linking process. However, incomplete conversion results in photoactivator molecules remaining trapped inside the protein microstructure, causing their gradual leaching and subsequent undesirable effect on biological applications. Here, we demonstrate the 3D fabrication of microstructures made of pure serum albumin protein using photoactivator-free fabrication, confirmed by Raman data. For the first time, acid-catalyzed hydrolysis of the created structures provides evidence that chemical cross-links are induced by exposure to femtosecond laser irradiation. The diversity of the biomaterial protein available for the precursors for LDW offers capability of the fabrication of complex biomimetic 3D microenvironments and biochip applications.
Collapse
Affiliation(s)
- Daniela Serien
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koji Sugioka
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages. Nat Commun 2019; 10:778. [PMID: 30770832 PMCID: PMC6377661 DOI: 10.1038/s41467-019-08788-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/23/2019] [Indexed: 01/16/2023] Open
Abstract
Constructing different protein nanostructures with high-order discrete architectures by using one single building block remains a challenge. Here, we present a simple, effective disulfide-mediated approach to prepare a set of protein nanocages with different geometries from single building block. By genetically deleting an inherent intra-subunit disulfide bond, we can render the conversion of an 8-mer bowl-like protein architecture (NF-8) into a 24-mer ferritin-like nanocage in solution, while selective insertion of an inter-subunit disulfide bond into NF-8 triggers its conversion into a 16-mer lenticular nanocage. Deletion of the same intra-subunit disulfide bond and insertion of the inter-subunit disulfide bond results in the conversion of NF-8 into a 48-mer protein nanocage in solution. Thus, in the laboratory, simple mutation of one protein building block can generate three different protein nanocages in a manner that is highly reminiscent of natural pentamer building block originating from viral capsids that self-assemble into protein assemblies with different symmetries.
Collapse
|
13
|
Bai W, Jiang Z, Ribbe AE, Thayumanavan S. Smart Organic Two-Dimensional Materials Based on a Rational Combination of Non-covalent Interactions. Angew Chem Int Ed Engl 2016; 55:10707-11. [PMID: 27490155 PMCID: PMC5154734 DOI: 10.1002/anie.201605050] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 01/24/2023]
Abstract
Rational design of organic 2D (O2D) materials has made some progress, but it is still in its infancy. A class of self-assembling small molecules is presented that form nano/microscale supramolecular 2D materials in aqueous media. A judicial combination of four different intermolecular interactions forms the basis for the robust formation of these ultrathin assemblies. These assemblies can be programmed to disassemble in response to a specific protein and release its non-covalently bound guest molecules.
Collapse
Affiliation(s)
- Wei Bai
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
14
|
Smart Organic Two-Dimensional Materials Based on a Rational Combination of Non-covalent Interactions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Lay CL, Lee YH, Lee MR, Phang IY, Ling XY. Formulating an Ideal Protein Photoresist for Fabricating Dynamic Microstructures with High Aspect Ratios and Uniform Responsiveness. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8145-8153. [PMID: 26974854 DOI: 10.1021/acsami.6b02306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The physical properties of aqueous-based stimuli-responsive photoresists are crucial in fabricating microstructures with high structural integrity and uniform responsiveness during two-photon lithography. Here, we quantitatively investigate how various components within bovine serum albumin (BSA) photoresists affect our ability to achieve BSA microstructures with consistent stimuli-responsive properties over areas exceeding 10(4) μm(2). We unveil a relationship between BSA concentration and dynamic viscosity, establishing a threshold viscosity to achieve robust BSA microstructures. We also demonstrate the addition of an inert polymer to the photoresist as viscosity enhancer. A set of systematically optimized processing parameters is derived for the construction of dynamic BSA microstructures. The optimized BSA photoresists and processing parameters enable us to extend the two-dimensional (2D) microstructures to three-dimensional (3D) ones, culminating in arrays of micropillars with aspect ratio > 10. Our findings foster the development of liquid stimuli-responsive photoresists to build multifunctional complex 3D geometries for applications such as bioimplantable devices or adaptive photonic systems.
Collapse
Affiliation(s)
- Chee Leng Lay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis, 08-03, 138634 Singapore
| | - Yih Hong Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| | - Mian Rong Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| | - In Yee Phang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis, 08-03, 138634 Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis, 08-03, 138634 Singapore
| |
Collapse
|