1
|
Chen P, Xu Q, Ding Z, Chen Q, Xu J, Cheng Z, Qiu X, Yuan B, Meng S, Yao N. Identification of a common ice nucleus on hydrophilic and hydrophobic close-packed metal surfaces. Nat Commun 2023; 14:5813. [PMID: 37726300 PMCID: PMC10509196 DOI: 10.1038/s41467-023-41436-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Establishing a general model of heterogeneous ice nucleation has long been challenging because of the surface water structures found on different substrates. Identifying common water clusters, regardless of the underlying substrate, is one of the key steps toward solving this problem. Here, we demonstrate the presence of a common water cluster found on both hydrophilic Pt(111) and hydrophobic Cu(111) surfaces using scanning tunneling microscopy and non-contact atomic force microscopy. Water molecules self-assemble into a structure with a central flat-lying hexagon and three fused pentagonal rings, forming a cluster consisting of 15 individual water molecules. This cluster serves as a critical nucleus during ice nucleation on both surfaces: ice growth beyond this cluster bifurcates to form two-dimensional (three-dimensional) layers on hydrophilic (hydrophobic) surfaces. Our results reveal the inherent similarity and distinction at the initial stage of ice growth on hydrophilic and hydrophobic close-packed metal surfaces; thus, these observations provide initial evidence toward a general model for water-substrate interaction.
Collapse
Affiliation(s)
- Pengcheng Chen
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08540-8211, USA
| | - Qiuhao Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Zijing Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Qing Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Jiyu Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Zhihai Cheng
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, 100872, Beijing, PR China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| | - Bingkai Yuan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, PR China.
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08540-8211, USA.
| |
Collapse
|
2
|
Duan S, Xu X. Accurate Simulations of Scanning Tunneling Microscope: Both Tip and Substrate States Matter. J Phys Chem Lett 2023:6726-6735. [PMID: 37470339 DOI: 10.1021/acs.jpclett.3c01603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Scanning tunneling microscope (STM) provides an atomic-scale characterization tool. To this end, high-resolution measurements and accurate simulations must closely cooperate. Emerging experimental techniques, e.g., substrate spacers and tip modifications, suppress metallic couplings and improve the resolution. On the other hand, development of STM simulation methods was inactive in the past decade. Conventional simulations focus on the electronic structure of the substrate, often overlooking detailed descriptions of the tip states. Meanwhile, the overwhelming usage of periodic boundary conditions ensures effective simulations of only neutral systems. In this Perspective, we highlight the recent progress that takes the effects of both tip and substrate into account under either Tersoff-Hamann or Bardeen's approximation, which provides an accurate analysis of measured high-resolution STM results, uncovers underlying concepts, and rationally designs experimental protocols for important chemical systems. We hope this Perspective will stimulate broad interest in advanced STM simulations, highlighting the way forward for STM investigations that involve complex geometrical and electronic structures.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
3
|
Duan S, Zhang IY, Xie Z, Xu X. Identification of Water Hexamer on Cu(111) Surfaces. J Am Chem Soc 2020; 142:6902-6906. [DOI: 10.1021/jacs.0c01549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Igor Ying Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhen Xie
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
4
|
Li J, Xu Q, Sun L, Xu J, Hao D, Tang X, Shan X, Meng S, Lu X. Rotational and Vibrational Excitations of a Single Water Molecule by Inelastic Electron Tunneling Spectroscopy. J Phys Chem Lett 2020; 11:1650-1655. [PMID: 32039599 DOI: 10.1021/acs.jpclett.0c00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two low-energy excitations of a single water molecule are observed via inelastic electron tunneling spectroscopy, where a significant enhancement is achieved by attaching the molecule to the tip apex in a scanning tunneling microscope. Density functional theory simulations and quantum mechanical calculations of an asymmetric top are carried out to reveal the origin of both excitations. Variations in tunneling junction separation give rise to the quantum confinement effect on the quantum state of a water molecule in the tunneling junction. Our results demonstrate a potential method for measuring the dynamic behavior of a single molecule confined in a tunneling junction, where the molecule-substrate interaction can be purposely tuned.
Collapse
Affiliation(s)
- Jianmei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuhao Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lihuan Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiyu Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Hao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangqian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan, Guangdong 523000, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Topological Quantum Computation, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan, Guangdong 523000, China
| |
Collapse
|
5
|
Dong A, Yan L, Sun L, Yan S, Shan X, Guo Y, Meng S, Lu X. Identifying Few-Molecule Water Clusters with High Precision on Au(111) Surface. ACS NANO 2018; 12:6452-6457. [PMID: 29812905 DOI: 10.1021/acsnano.8b02264] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Revealing the nature of a hydrogen-bond network in water structures is one of the imperative objectives of science. With the use of a low-temperature scanning tunneling microscope, water clusters on a Au(111) surface were directly imaged with molecular resolution by a functionalized tip. The internal structures of the water clusters as well as the geometry variations with the increase of size were identified. In contrast to a buckled water hexamer predicted by previous theoretical calculations, our results present deterministic evidence for a flat configuration of water hexamers on Au(111), corroborated by density functional theory calculations with properly implemented van der Waals corrections. The consistency between the experimental observations and improved theoretical calculations not only renders the internal structures of absorbed water clusters unambiguously, but also directly manifests the crucial role of van der Waals interactions in constructing water-solid interfaces.
Collapse
Affiliation(s)
- Anning Dong
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Lei Yan
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Lihuan Sun
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Shichao Yan
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , 201210 , China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Yang Guo
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing , 100190 , People's Republic of China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing , 100190 , People's Republic of China
| |
Collapse
|