1
|
Shen X, Guyot-Sionnest P. Midinfrared Electroluminescence from CdSe Quantum Dots. ACS NANO 2025; 19:5811-5817. [PMID: 39893668 DOI: 10.1021/acsnano.4c18113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Midinfrared electroluminescence from the electron intraband transition is demonstrated with intrinsic CdSe colloidal quantum dots. The device consists of a thin film of CdSe dots and a layer of ZnO nanocrystals, sandwiched between two electrodes that enhance light outcoupling at 5 μm. At 100 mA and 15 V, the electron-to-photon efficiency is 0.40%, and the power conversion efficiency is 0.013%. The devices show good air and thermal stability. Electron transport layers and surface traps are discussed.
Collapse
Affiliation(s)
- Xingyu Shen
- James Franck Institute, the University of Chicago, Chicago, Illinois 60637, United States
| | | |
Collapse
|
2
|
Bera R, Dosil M, Konstantatos G. Intraband Exciton Dynamics of n-Doped Silver Selenide Quantum Dots. NANO LETTERS 2024; 24:13919-13926. [PMID: 39466224 PMCID: PMC11544693 DOI: 10.1021/acs.nanolett.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
AgxSe (x > 2) colloidal quantum dots (CQDs) have recently emerged as a promising environmentally friendly material contender for mid- and long-wave infrared optoelectronics, leveraging their intraband transition (1Se-1Pe). However, multicarrier interactions in CQDs, particularly Auger recombination, have profound implications on the optoelectronic properties of the materials and their potential in device applications. Understanding the intraband excited-state dynamics in n-doped AgxSe is therefore essential for the assessment and successful implementation of this material platform in devices. We, herein, investigate the carrier dynamics of AgxSe in both solution and thin-film states using a femtosecond mid-infrared transient absorption spectrometer. Our observations reveal that the multicarrier Auger process depends on the degree of doping in AgxSe CQDs and accelerates when the Fermi energy (EF) level approaches the 1Pe state. The calculated intraband Auger coefficients (CA) are measured to be on the order of ∼10-28 cm6 s-1, significantly larger compared to analogous n-doped HgS/Se CQDs.
Collapse
Affiliation(s)
- Rajesh Bera
- ICFO,
Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860 Spain
| | - Miguel Dosil
- ICFO,
Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860 Spain
| | - Gerasimos Konstantatos
- ICFO,
Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860 Spain
- ICREA,
Institució Catalana de Recerca i Estudis Avançats, Barcelona, 08010 Spain
| |
Collapse
|
3
|
Al Mahfuz MM, Islam R, Ko DK. Artificial Amacrine Retinal Circuits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46454-46460. [PMID: 39169757 DOI: 10.1021/acsami.4c09303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Event-based imaging represents a new paradigm in visual information processing that addresses the speed and energy efficiency shortcomings inherently present in the current complementary metal oxide semiconductor-based machine vision. Realizing such imaging systems has previously been sought using very large-scale integration technologies that have complex circuitries consisting of many photodiodes, differential amplifiers, capacitors, and resistors. Here, we demonstrate that event-driven sensing can be achieved using a simple one-resistor, one-capacitor (1R1C) circuit, where the capacitor is modified with colloidal quantum dots (CQDs) to have a photoresponse. This sensory circuit emulates the motion-tracking function of the biological retina, in which the amacrine cells in the bipolar-to-ganglion synaptic pathway produce a transient spiking signal only in response to changes in light intensity but remain inactive under constant illumination. When extended to a 2D imaging array, the individual sensors work independently and output signals only when a change in the light intensity is detected; hence, the concept of the frame in image processing is thereby removed. In this work, we present the fabrication and characterization of a CQD photocapacitor-based 1R1C circuit that has a spectral response at 1550 nm in the short-wave infrared (SWIR). We report on the key performance parameters including peak responsivity, noise, and optical noise equivalent power and discuss the operating mechanism that is responsible for spiking responses in these artificial retinal circuits. The present work sets the foundation for expanding the bioinspired vision sensor capability toward midwave infrared (MWIR) and long-wave infrared (LWIR) spectral regions that are invisible to human eyes and mainstream semiconductor technologies.
Collapse
Affiliation(s)
- Mohammad M Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Rakina Islam
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Kamath A, Guyot-Sionnest P. The "energy gap law" for mid-infrared nanocrystals. J Chem Phys 2024; 160:200901. [PMID: 38785281 DOI: 10.1063/5.0206018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Colloidal quantum dots are of increasing interest for mid-infrared detection and emission, but device performances will vastly benefit from reducing the non-radiative recombination. Empirically, the photoluminescence quantum yield decreases exponentially toward the mid-infrared, which appears similar to the energy gap law known for molecular fluorescence in the near-infrared. For molecules, the mechanism is electron-vibration coupling and fast internal vibrational relaxation. Here, we explore the possible mechanisms for inorganic quantum dots. The primary mechanism is assigned to an electric dipole near-field energy transfer from the quantum dot electronic transitions to the infrared absorption of surface organic ligands and then to the multiphonon absorption of the quantum dot inorganic core or the surrounding inorganic matrix. In order to obtain luminescent quantum dots in the 3-10 μm range, we motivate the importance of using inorganic matrices, which have a higher infrared transparency compared to organic materials. At longer wavelengths, inter-quantum dot energy transfer is noted to be much faster than radiative relaxation, indicating that bright mid-infrared colloidal quantum dot films might then benefit from dilution.
Collapse
Affiliation(s)
- Ananth Kamath
- James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Philippe Guyot-Sionnest
- James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Lei H, Liu S, Li J, Li C, Qin H, Peng X. Band-Edge Energy Levels of Dynamic Excitons in Cube-Shaped CdSe/CdS Core/Shell Nanocrystals. ACS NANO 2023; 17:21962-21972. [PMID: 37901990 DOI: 10.1021/acsnano.3c08377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
An electron-hole pair in a cube-shaped CdSe/CdS core/shell nanocrystal exists in the form of dynamic excitons across the strongly and weakly confined regimes under ambient temperatures. Photochemical doping is applied to distinguish the band-edge electron and hole levels, confirming an effective mass model with universal constants. Reduction of the optical bandgap upon epitaxy of the CdS shells is caused by lowering the band-edge electron level and barely affecting the band-edge hole level. Similar shifts of the electron levels, yet retaining the hole levels, can switch the order in energy of the three lowest-energy transitions. Thermal distribution of 1-4 electrons among the two thermally accessible electron levels follows number-counting statistics, instead of Fermi-Dirac distribution.
Collapse
Affiliation(s)
- Haixin Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaojie Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chuyue Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Song H, Lee JH, Eom SY, Choi D, Jeong KS. Ultranarrow Mid-infrared Quantum Plasmon Resonance of Self-Doped Silver Selenide Nanocrystal. ACS NANO 2023; 17:16895-16903. [PMID: 37579184 DOI: 10.1021/acsnano.3c03911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The infrared quantum plasmon resonance (IR QPR) of nanocrystals (NCs) exhibits the combined properties of classical and quantum mechanics, potentially overcoming the limitations of conventional optical features. However, research on the development of localized surface plasmon resonance (LSPR) from colloidal quantum dots has stagnated, owing to the challenge of increasing the carrier density of semiconductor NCs. Herein, we present the mid-IR QPR of a self-doped Ag2Se NC with an exceptionally narrow bandwidth. Chemical modification of the NC surface with chloride realizes this narrow QPR bandwidth by achieving a high free-carrier density in the NC. The mid-IR QPR feature was thoroughly analyzed by using various experimental methods such as Fourier transform (FT) IR spectroscopy, X-ray photoelectron spectroscopy, and current-voltage measurements. In addition, the optical properties were theoretically analyzed using the plamon-in-a-box model and a modified hydrodynamic model that revealed the effect of coupling with the intraband transition and the limited nature of electron density in semiconductor NCs. Integrating the quantum effect into the plasmonic resonance reduces the peak bandwidth to 19.7 meV, which is an extremely narrow bandwidth compared with that of the LSPR of conventional metal oxide or metal chalcogenide NCs. Our results demonstrate that self-doped silver selenide quantum dots are excellent systems for studying mid-IR QPR.
Collapse
Affiliation(s)
- Haemin Song
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jin Hyeok Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - So Young Eom
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dongsun Choi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Seob Jeong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Al Mahfuz MM, Park J, Islam R, Ko DK. Colloidal Ag 2Se intraband quantum dots. Chem Commun (Camb) 2023; 59:10722-10736. [PMID: 37606169 DOI: 10.1039/d3cc02203j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the emergence of the Internet of Things, wearable electronics, and machine vision, the exponentially growing demands for miniaturization, energy efficiency, and cost-effectiveness have imposed critical requirements on the size, weight, power consumption and cost (SWaP-C) of infrared detectors. To meet this demand, new sensor technologies that can reduce the fabrication cost associated with semiconductor epitaxy and remove the stringent requirement for cryogenic cooling are under active investigation. In the technologically important spectral region of mid-wavelength infrared, intraband colloidal quantum dots are currently at the forefront of this endeavor, with wafer-scale monolithic integration and Auger suppression being the key material capabilities to minimize the sensor's SWaP-C. In this Feature Article, we provide a focused review on the development of sensors based on Ag2Se intraband colloidal quantum dots, a heavy metal-free colloidal nanomaterial that has merits for wide-scale adoption in consumer and industrial sectors.
Collapse
Affiliation(s)
- Mohammad Mostafa Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Junsung Park
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Rakina Islam
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| |
Collapse
|
9
|
Zhang H, Peterson JC, Guyot-Sionnest P. Intraband Transition of HgTe Nanocrystals for Long-Wave Infrared Detection at 12 μm. ACS NANO 2023; 17:7530-7538. [PMID: 37027314 DOI: 10.1021/acsnano.2c12636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The synthesis of n-doped HgTe colloidal quantum dots was optimized to produce samples with a 1Se-1Pe intraband transition in the long-wave infrared (8-12 μm). The spin-orbit splitting of 1Pe states places the 1Se-1Pe1/2 transition around 10 μm. The narrow line width of 130 cm-1 at 300 K is limited by the size distribution. This narrowing leads to an absorption coefficient about 5 times stronger than is possible with the HgTe CQD interband transition at similar energies. From 300 to 80 K, the intraband transition blueshifts by 90 cm-1, while the interband transition redshifts by 350 cm-1. These shifts are assigned to the temperature dependence of the band structure. With ∼2 electrons/dot doping at 80 K, a photoconductive film of 80 nm thickness on a quarter wave reflector substrate showed a detectivity (D*) of ∼107 Jones at 500 Hz in the 8-12 μm range.
Collapse
Affiliation(s)
- Haozhi Zhang
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - John C Peterson
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Philippe Guyot-Sionnest
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Tian Y, Luo H, Chen M, Li C, Kershaw SV, Zhang R, Rogach AL. Mercury chalcogenide colloidal quantum dots for infrared photodetection: from synthesis to device applications. NANOSCALE 2023; 15:6476-6504. [PMID: 36960839 DOI: 10.1039/d2nr07309a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Commercial infrared (IR) photodetectors based on epitaxial growth inorganic semiconductors, e.g. InGaAs and HgCdTe, suffer from high fabrication cost, poor compatibility with silicon integrated circuits, rigid substrates and bulky cooling systems, which leaves a large development window for the emerging solution-processable semiconductor-based photo-sensing devices. Among the solution-processable semiconductors, mercury (Hg) chalcogenide colloidal quantum dots (QDs) exhibit unique ultra-broad and tuneable photo-responses in the short-wave infrared to far-wave infrared range, and have demonstrated photo-sensing abilities comparable to the commercial products, especially with advances in high operation temperature. Here, we provide a focused review on photodetectors employing Hg chalcogenide colloidal QDs, with a comprehensive summary of the essential progress in the areas of synthesis methods of QDs, property control, device engineering, focus plane array integration, etc. Besides imaging demonstrations, a series of Hg chalcogenide QD photodetector based flexible, integrated, multi-functional applications are also summarized. This review shows prospects for the next-generation low-cost highly-sensitive and compact IR photodetectors based on solution-processable Hg chalcogenide colloidal QDs.
Collapse
Affiliation(s)
- Yuanyuan Tian
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hongqiang Luo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| | - Rong Zhang
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Xiamen University, Xiamen 361005, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| |
Collapse
|
11
|
Stingel AM, Leemans J, Hens Z, Geiregat P, Petersen PB. Narrow homogeneous linewidths and slow cooling dynamics across infrared intra-band transitions in n-doped HgSe colloidal quantum dots. J Chem Phys 2023; 158:114202. [PMID: 36948807 DOI: 10.1063/5.0139795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Intra-band transitions in colloidal quantum dots (QDs) are promising for opto-electronic applications in the mid-IR spectral region. However, such intra-band transitions are typically very broad and spectrally overlapping, making the study of individual excited states and their ultrafast dynamics very challenging. Here, we present the first full spectrum two-dimensional continuum infrared (2D CIR) spectroscopy study of intrinsically n-doped HgSe QDs, which exhibit mid-infrared intra-band transitions in their ground state. The obtained 2D CIR spectra reveal that underneath the broad absorption line shape of ∼500 cm-1, the transitions exhibit surprisingly narrow intrinsic linewidths with a homogeneous broadening of 175-250 cm-1. Furthermore, the 2D IR spectra are remarkably invariant, with no sign of spectral diffusion dynamics at waiting times up to 50 ps. Accordingly, we attribute the large static inhomogeneous broadening to the distribution of size and doping level of the QDs. In addition, the two higher-lying P-states of the QDs can be clearly identified in the 2D IR spectra along the diagonal with a cross-peak. However, there is no indication of cross-peak dynamics indicating that, despite the strong spin-orbit coupling in HgSe, transitions between the P-states must be longer than our maximum waiting time of 50 ps. This study illustrates a new frontier of 2D IR spectroscopy enabling the study of intra-band carrier dynamics in nanocrystalline materials across the entire mid-infrared spectrum.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jari Leemans
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Hao Q, Zhao X, Tang X, Chen M. The Historical Development of Infrared Photodetection Based on Intraband Transitions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1562. [PMID: 36837192 PMCID: PMC9960069 DOI: 10.3390/ma16041562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 05/10/2023]
Abstract
The infrared technology is entering widespread use as it starts fulfilling a growing number of emerging applications, such as smart buildings and automotive sectors. Majority of infrared photodetectors are based on interband transition, which is the energy gap between the valence band and the conduction band. As a result, infrared materials are mainly limited to semi-metal or ternary alloys with narrow-bandgap bulk semiconductors, whose fabrication is complex and expensive. Different from interband transition, intraband transition utilizing the energy gap inside the band allows for a wider choice of materials. In this paper, we mainly discuss the recent developments on intraband infrared photodetectors, including 'bottom to up' devices such as quantum well devices based on the molecular beam epitaxial approach, as well as 'up to bottom' devices such as colloidal quantum dot devices based on the chemical synthesis.
Collapse
Affiliation(s)
- Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Xue Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Tang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
13
|
Brumberg A, Watkins NE, Diroll BT, Schaller RD. Acceleration of Biexciton Radiative Recombination at Low Temperature in CdSe Nanoplatelets. NANO LETTERS 2022; 22:6997-7004. [PMID: 36018835 DOI: 10.1021/acs.nanolett.2c01791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colloidal semiconductor nanocrystals offer bandgap tunability, high photoluminescence quantum yield, and colloidal processing of benefit to optoelectronics, however rapid nonradiative Auger recombination (AR) deleteriously affects device efficiencies at elevated excitation intensities. AR is understood to transition from temperature-dependent behavior in bulk semiconductors to temperature-independent behavior in zero-dimensional quantum dots (QDs) as a result of discretized band structure that facilitates satisfaction of linear momentum conservation. For nanoplatelets (NPLs), two-dimensional morphology renders prediction of photophysical behaviors challenging. Here, we investigate and compare the temperature dependence of excited-stated lifetime and fluence-dependent emission of CdSe NPLs and QDs. For NPLs, upon temperature reduction, biexciton lifetime surprisingly decreases (even becoming shorter lived than trion emission) and emission intensity increases nearly linearly with fluence rather than saturating, consistent with dominance of radiative recombination rather than AR. CdSe NPLs thus differ fundamentally from core-only QDs and foster increased utility of photogenerated excitons and multiexcitons at low temperatures.
Collapse
Affiliation(s)
- Alexandra Brumberg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicolas E Watkins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
14
|
Chen M, Hao Q, Luo Y, Tang X. Mid-Infrared Intraband Photodetector via High Carrier Mobility HgSe Colloidal Quantum Dots. ACS NANO 2022; 16:11027-11035. [PMID: 35792103 DOI: 10.1021/acsnano.2c03631] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this work, a room-temperature mixed-phase ligand exchange method is developed to obtain a relatively high carrier mobility (∼1 cm2/(V s)) on HgSe intraband colloidal quantum dot solids without any observable trap state. What is more, the doping from 1Se to 1Pe state in the conduction band could be precisely controlled by additional salts during this method, proved by optical and transport experiments. The high mobility and controllable doping benefit the mid-infrared photodetector utilizing the 1Se to 1Pe transition, with a 1000-fold improvement in response speed, which is several μs, a 55-fold increase in responsivity, which is 77 mA/W, and a 10-fold increase in specific detectivity, which is above 1.7 × 109 Jones at 80 K. The high-performance photodetector could serve as an intraband infrared camera for thermal imaging, as well as a CO2 gas sensor with a range from 0.25 to 2000 ppm.
Collapse
Affiliation(s)
- Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Yuning Luo
- School of Optics and Photonics, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Xin Tang
- School of Optics and Photonics, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| |
Collapse
|
15
|
Simulation and Design of HgSe Colloidal Quantum-Dot Microspectrometers. COATINGS 2022. [DOI: 10.3390/coatings12070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, colloidal quantum dots (CQD) have been intensively studied in various fields due to their excellent optical properties, such as size-tunable absorption features and wide spectral tunability. Therefore, CQDs are promising infrared materials to become alternatives for epitaxial semiconductors, such as HgCdTe, InSb, and type II superlattices. Here, we report a simulation study of a microspectrometer fabricated by integrating an intraband HgSe CQD detector with a distributed Bragg reflector (DBR). Intraband HgSe CQDs possess unique narrowband absorption and optical response, which makes them an ideal material platform to achieve high-resolution detection for infrared signatures, such as molecular vibration. A microspectrometer with a center wavelength of 4 µm is studied. The simulation results show that the optical absorption rate of the HgSe CQD detector can be increased by 300%, and the full-width-at-half-maximum (FWHM) is narrowed to 30%, realizing precise regulation of the absorption wavelength. The influence of the incident angle of light waves on the microspectrometer is also simulated, and the results show that the absorption rate of the HgSe quantum dot detector is increased 2–3 times within the incident angle of 0–23 degrees, reaching a spectral absorption rate of more than 80%. Therefore, we believe that HgSe CQDs are a promising material for realizing practical HgSe microspectrometers.
Collapse
|
16
|
Abstract
In this paper, we investigate an intraband mid-infrared photodetector based on HgSe colloidal quantum dots (CQDs). We study the size, absorption spectra, and carrier mobility of HgSe CQDs films. By regulating the time and temperature of the reaction during synthesis, we have achieved the regulation of CQDs size, and the number of electrons doped in conduction band. It is experimentally verified by the field effect transistor measurement that dark current is effectively reduced by a factor of 10 when the 1Se state is doped with two electrons compared with other doping densities. The HgSe CQDs film mobility is also measured as a function of temperature the HgSe CQDs thin film detector, which could be well fitted by Marcus Theory with a maximum of 0.046 ± 0.002 cm2/Vs at room temperature. Finally, we experimentally discuss the device performance such as photocurrent and responsivity. The responsivity reaches a maximum of 0.135 ± 0.012 A/W at liquid nitrogen temperature with a narrow band photocurrent spectrum.
Collapse
|
17
|
Ruppert M, Bui H, Sagar LK, Geiregat P, Hens Z, Bester G, Huse N. Intraband dynamics of mid-infrared HgTe quantum dots. NANOSCALE 2022; 14:4123-4130. [PMID: 34874046 DOI: 10.1039/d1nr07007j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Femtosecond pump-probe spectroscopy reveals ultrafast carrier dynamics in mid-infrared (MIR) colloidal HgTe nanoparticles with a bandgap of 2.5 μm. We observe intraband relaxation processes after photoexcitation ranging from resonant excitation up to the multi-exciton generation (MEG) regime by identifying initially excited states from atomic effective pseudopotential calculations. Our study elucidates the earliest dynamics below 10 ps in this technologically relevant material. With increasing photon energy, we find carrier relaxation times as long as 2.1 ps in the MEG regime close to the ionization threshold of the particles. For all photon energies, we extract a constant mean carrier energy dissipation rate of 0.36 eV ps-1 from which we infer negligible impact of the density of states on carrier cooling.
Collapse
Affiliation(s)
- Matthias Ruppert
- Institute for Nanostructure and Solid-State Physics, Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Hanh Bui
- Physical Chemistry and Physics departments, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| | - Laxmi Kishore Sagar
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Gabriel Bester
- Physical Chemistry and Physics departments, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| | - Nils Huse
- Institute for Nanostructure and Solid-State Physics, Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| |
Collapse
|
18
|
Kamath A, Melnychuk C, Guyot-Sionnest P. Toward Bright Mid-Infrared Emitters: Thick-Shell n-Type HgSe/CdS Nanocrystals. J Am Chem Soc 2021; 143:19567-19575. [PMID: 34752062 PMCID: PMC8630792 DOI: 10.1021/jacs.1c09858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A procedure is developed for the growth of thick, conformal CdS shells that preserve the optical properties of 5 nm HgSe cores. The n-doping of the HgSe/CdS core/shell particles is quantitatively tuned through a simple postsynthetic Cd treatment, while the doping is monitored via the intraband optical absorption at 5 μm wavelength. Photoluminescence lifetime and quantum yield measurements show that the CdS shell greatly increases the intraband emission intensity. This indicates that decoupling the excitation from the environment reduces the nonradiative recombination. We find that weakly n-type HgSe/CdS are the brightest solution-phase mid-infrared chromophores reported to date at room temperature, achieving intraband photoluminescence quantum yields of 2%. Such photoluminescence corresponds to intraband lifetimes in excess of 10 ns, raising important questions about the fundamental limits to achievable slow intraband relaxation in quantum dots.
Collapse
Affiliation(s)
- Ananth Kamath
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Christopher Melnychuk
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Philippe Guyot-Sionnest
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Hafiz SB, Al Mahfuz MM, Lee S, Ko DK. Midwavelength Infrared p-n Heterojunction Diodes Based on Intraband Colloidal Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49043-49049. [PMID: 34613686 DOI: 10.1021/acsami.1c14749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As an emerging member of the colloidal semiconductor quantum dot materials family, intraband quantum dots are being extensively studied for thermal infrared sensing applications. High-performance detectors can be realized using a traditional p-n junction device design; however, the heavily doped nature of intraband quantum dots presents a new challenge in realizing diode devices. In this work, we utilize a trait uniquely available in a colloidal quantum dot material system to overcome this challenge: the ability to blend two different types of quantum dots to control the electrical property of the resulting film. We report on the preparation of binary mixture films containing midwavelength infrared Ag2Se intraband quantum dots and the fabrication of p-n heterojunction diodes with strong rectifying characteristics. The peak specific detectivity at 4.5 μm was measured to be 107 Jones at room temperature, which is an orders of magnitude improvement compared to the previous generation of intraband quantum dot detectors.
Collapse
Affiliation(s)
- Shihab Bin Hafiz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad M Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Sunghwan Lee
- School of Engineering Technology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
Ganeev RA, Shuklov IA, Zvyagin AI, Dyomkin DV, Smirnov MS, Ovchinnikov OV, Lizunova AA, Perepukhov AM, Popov VS, Razumov VF. Synthesis and low-order optical nonlinearities of colloidal HgSe quantum dots in the visible and near infrared ranges. OPTICS EXPRESS 2021; 29:16710-16726. [PMID: 34154228 DOI: 10.1364/oe.425549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
We synthesize colloidal HgSe quantum dots and characterize their nonlinear refraction and nonlinear absorption using a Nd:YAG laser and its second harmonic. The 7.5 nm quantum dots were synthesized using the hot-injection method. The nonlinear absorption (β = 9×10-7 cm W-1) and negative nonlinear refraction (γ = -5×10-12 cm2 W-1) coefficients of colloidal quantum dots were determined using the 10 ns, 532 nm laser radiation. The joint influence of above processes was realized at a higher intensity of probe pulses. In the case of 10 ns, 1064 nm radiation, only negative nonlinear refraction dominated during z-scans of these quantum dots. The studies of optical limiting using two laser sources demonstrated the effectiveness of this process at 532 nm. The role of nonlinear scattering is analyzed. We discuss the mechanisms responsible for the nonlinear refraction processes in colloidal HgSe quantum dots.
Collapse
|
21
|
Bera R, Kim G, Choi D, Kim J, Jeong KS. Beyond the Bandgap Photoluminescence of Colloidal Semiconductor Nanocrystals. J Phys Chem Lett 2021; 12:2562-2569. [PMID: 33684285 DOI: 10.1021/acs.jpclett.1c00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intraband transitions of colloidal semiconductor nanocrystals, or the electronic transitions occurring in either the conduction band or valence band, have recently received considerable attention because utilizing the intraband transitions provides new approaches for applications such as photodetectors, imaging, solar cells, lasers, and so on. In the past few years, it has been revealed that observing the intraband transition is not limited for temporal measurement such as ultrafast spectroscopy but available for steady-state measurement even under ambient conditions with the help of self-doped semiconductor nanocrystals. Considering the large absorption coefficient of the steady-state intraband transition comparable to that of the bandgap transition, the use of the intraband transition will be promising for both fundamental and application studies. Here, we summarize the recent progress in studies on intraband photoluminescence of self-doped semiconductor nanocrystals and discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Rajesh Bera
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
| | - Gahyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dongsun Choi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
| | - Jihye Kim
- Division of General Chemistry, School of Liberal Arts Education, University of Seoul, Seoul 02504, Republic of Korea
| | - Kwang Seob Jeong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
22
|
Gréboval C, Chu A, Goubet N, Livache C, Ithurria S, Lhuillier E. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. Chem Rev 2021; 121:3627-3700. [DOI: 10.1021/acs.chemrev.0c01120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charlie Gréboval
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Audrey Chu
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Nicolas Goubet
- CNRS, Laboratoire de la Molécule aux Nano-objets; Réactivité, Interactions et Spectroscopies, MONARIS, Sorbonne Université, 4 Place Jussieu, Case Courier 840, F-75005 Paris, France
| | - Clément Livache
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d’Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
23
|
Hafiz SB, Al Mahfuz MM, Ko DK. Vertically Stacked Intraband Quantum Dot Devices for Mid-Wavelength Infrared Photodetection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:937-943. [PMID: 33372770 DOI: 10.1021/acsami.0c19450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Intraband quantum dots are degenerately doped semiconductor nanomaterials that exhibit unique optical properties in mid- to long-wavelength infrared. To date, these quantum dots have been only studied as lateral photoconductive devices, while transitioning toward a vertically stacked structure can open diverse opportunities for investigating advanced device designs. Here, we report the first vertical intraband quantum dot heterojunction devices composed of Ag2Se/PbS/Ag2Se quantum dot stacks that bring the advantage of reduced dark conductivity with a simplified device fabrication procedure. We discuss the improvement in the colloidal synthesis of Ag2Se quantum dots that are critical for vertical device fabrication, identify an important process that determines the mid-wavelength infrared responsivity of the quantum dot film, and analyze the basic device characteristics and key detector performance parameters. Compared to the previous generation of Ag2Se quantum dot-based photoconductive devices, approximately 70 times increase in the mid-wavelength responsivity, at room temperature, is observed.
Collapse
Affiliation(s)
- Shihab Bin Hafiz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad M Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
24
|
Affiliation(s)
- Christopher Melnychuk
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | | |
Collapse
|
25
|
Son J, Choi D, Park M, Kim J, Jeong KS. Transformation of Colloidal Quantum Dot: From Intraband Transition to Localized Surface Plasmon Resonance. NANO LETTERS 2020; 20:4985-4992. [PMID: 32496072 DOI: 10.1021/acs.nanolett.0c01080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An increase in the carrier density of semiconductor nanocrystals can gradually change the origin of the optical property from the excitonic transition to the localized surface plasmon resonances. Here, we present the evolution of the electronic transition of self-doped Ag2Se colloidal quantum dots, from the intraband transition to the localized surface plasmon resonances along with a splitting of the intraband transition (1Pe-1Se). The minimum fwhm of the split intraband transition is only 23.7 meV, which is exceptionally narrow compared to that of metal oxide nanocrystals showing LSPRs, inferring that the electron-electron scattering is significantly suppressed due to the smaller carrier density. The splitting of the intraband transition mainly results from the asymmetrical crystal structure of the tetragonal Ag2Se CQDs and becomes distinct when the nanocrystal changes its crystal structure from the cubic to tetragonal structure. Maximizing the discrete energy levels in the quantum dot along with mixing with plasmonic characters may provide opportunities to fully harness merits of both the quantum confinement effect and localized surface plasmon resonance characters.
Collapse
Affiliation(s)
- Juhee Son
- Department of Chemistry, Korea University, Seoul 02841 Republic of Korea
| | - Dongsun Choi
- Department of Chemistry, Korea University, Seoul 02841 Republic of Korea
| | - Mihyeon Park
- Department of Chemistry, Korea University, Seoul 02841 Republic of Korea
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kwang Seob Jeong
- Department of Chemistry, Korea University, Seoul 02841 Republic of Korea
| |
Collapse
|
26
|
Yang W, Yang Y, Kaledin AL, He S, Jin T, McBride JR, Lian T. Surface passivation extends single and biexciton lifetimes of InP quantum dots. Chem Sci 2020; 11:5779-5789. [PMID: 32832054 PMCID: PMC7416692 DOI: 10.1039/d0sc01039a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023] Open
Abstract
Indium phosphide quantum dots (InP QDs) are nontoxic nanomaterials with potential applications in photocatalytic and optoelectronic fields. Post-synthetic treatments of InP QDs are known to be essential for improving their photoluminescence quantum efficiencies (PLQEs) and device performances, but the mechanisms remain poorly understood. Herein, by applying ultrafast transient absorption and photoluminescence spectroscopies, we systematically investigate the dynamics of photogenerated carriers in InP QDs and how they are affected by two common passivation methods: HF treatment and the growth of a heterostructure shell (ZnS in this study). The HF treatment is found to improve the PLQE up to 16-20% by removing an intrinsic fast hole trapping channel (τ h,non = 3.4 ± 1 ns) in the untreated InP QDs while having little effect on the band-edge electron decay dynamics (τ e = 26-32 ns). The growth of the ZnS shell, on the other hand, is shown to improve the PLQE up to 35-40% by passivating both electron and hole traps in InP QDs, resulting in both a long-lived band-edge electron (τ e > 120 ns) and slower hole trapping lifetime (τ h,non > 45 ns). Furthermore, both the untreated and the HF-treated InP QDs have short biexciton lifetimes (τ xx ∼ 1.2 ± 0.2 ps). The growth of an ultra-thin ZnS shell (∼0.2 nm), on the other hand, can significantly extend the biexciton lifetime of InP QDs to 20 ± 2 ps, making it a passivation scheme that can improve both the single and multiple exciton lifetimes. Based on these results, we discuss the possible trap-assisted Auger processes in InP QDs, highlighting the particular importance of trap passivation for reducing the Auger recombination loss in InP QDs.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Chemistry , Emory University , 1515 Dickey Drive Northeast , Atlanta , Georgia 30322 , USA . ;
- Department of Chemistry - Ångström Laboratory , Physical Chemistry , Uppsala University , SE-75120 Uppsala , Sweden
| | - Yawei Yang
- Department of Chemistry , Emory University , 1515 Dickey Drive Northeast , Atlanta , Georgia 30322 , USA . ;
- Electronic Materials Research Laboratory , Key Laboratory of the Ministry of Education , International Center for Dielectric Research , Shaanxi Engineering Research Center of Advanced Energy Materials and Devices , School of Electronic Science and Engineering , Xi'an Jiaotong University , Xi'an 710049 , Shaanxi , P. R. China
| | - Alexey L Kaledin
- Cherry L. Emerson Center for Scientific Computation , Emory University , 1515 Dickey Drive , Atlanta , GA 30322 , USA
| | - Sheng He
- Department of Chemistry , Emory University , 1515 Dickey Drive Northeast , Atlanta , Georgia 30322 , USA . ;
| | - Tao Jin
- Department of Chemistry , Emory University , 1515 Dickey Drive Northeast , Atlanta , Georgia 30322 , USA . ;
| | - James R McBride
- Department of Chemistry , The Vanderbilt Institute of Nanoscale Science and Engineering , Vanderbilt University , Nashville , TN 37235 , USA
| | - Tianquan Lian
- Department of Chemistry , Emory University , 1515 Dickey Drive Northeast , Atlanta , Georgia 30322 , USA . ;
| |
Collapse
|
27
|
Tan H, Hu H, Huang L, Qian K. Plasmonic tweezers for optical manipulation and biomedical applications. Analyst 2020; 145:5699-5712. [DOI: 10.1039/d0an00577k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This comprehensive minireview highlights the recent research on the subtypes, optical manipulation, and biomedical applications of plasmonic tweezers.
Collapse
Affiliation(s)
- Hongtao Tan
- Department of Pancreatobiliary Surgery
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- P. R. China
| | - Huiqian Hu
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Lin Huang
- Stem Cell Research Center
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|