1
|
Botti V, De Bei O, Marchetti M, Campanini B, Cannistraro S, Bettati S, Bizzarri AR. Nanoscale dynamical investigation of the hemoglobin complex with the bacterial protein IsdB: is their interaction stabilized by catch bonds? NANOSCALE 2024; 16:4308-4316. [PMID: 38353599 DOI: 10.1039/d3nr05241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Iron-regulated surface determinant B (IsdB) is a surface protein of Staphylococcus aureus that plays essential roles in host cell invasion by mediating both bacterial adhesion and hemic iron acquisition. Single-molecule experiments have recently revealed that the binding of IsdB to vitronectin and integrins is dramatically strengthened under mechanical stress conditions, promoting staphylococcal adhesion. Here we conducted atomic force spectroscopy (AFS) measurements of the interaction between IsdB and hemoglobin (Hb), in both its oxidized (metHb) and reduced forms (HbCO). While the former represents the natural substrate for IsdB, the latter is resistant to heme extraction. For the unbinding between IsdB and HbCO, we obtained a linear trend in the Bell-Evans plot, indicative of a weakening of the interaction upon mechanical stress. For the unbinding between IsdB and metHb, we found similar behavior at low loading rates. Remarkably, a non-linear trend of the complex interaction force was detected at higher force-pulling rates. Such behavior may provide some cues to the ability of IsdB to form stress-dependent bonds also with Hb, possibly enabling a more efficient heme transfer through stabilization of the transient (in vivo) IsdB-Hb complex.
Collapse
Affiliation(s)
- Valentina Botti
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| | - Omar De Bei
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| | - Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
- Institute of Biophysics, National Research Council, via G. Moruzzi, 56124, Pisa, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Henderson SR, Geoghegan JA. The A domain of clonal complex 1-type fibronectin binding protein B promotes adherence and biofilm formation in Staphylococcus aureus. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001348. [PMID: 37326621 PMCID: PMC10333788 DOI: 10.1099/mic.0.001348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Adhesive interactions between Staphylococcus aureus and the host rely on cell-wall-anchored proteins such as fibronectin-binding protein B (FnBPB). Recently we showed that the FnBPB protein expressed by clonal complex (CC) 1 isolates of S. aureus mediates bacterial adhesion to corneodesmosin. The proposed ligand-binding region of CC1-type FnBPB shares just 60 % amino acid identity with the archetypal FnBPB protein from CC8. Here we investigated ligand binding and biofilm formation by CC1-type FnBPB. We found that the A domain of FnBPB binds to fibrinogen and corneodesmosin and identified residues within the hydrophobic ligand trench in the A domain that are essential for the binding of CC1-type FnBPB to ligands and during biofilm formation. We further investigated the interplay between different ligands and the influence of ligand binding on biofilm formation. Overall, our study provides new insights into the requirements for CC1-type FnBPB-mediated adhesion to host proteins and FnBPB-mediated biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Sara R. Henderson
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Joan A. Geoghegan
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|