1
|
Xi D, Yang Y, Guo J, Wang M, Yan X, Li C. Single-cell sequencing and spatial transcriptomics reveal the evolution of glucose metabolism in hepatocellular carcinoma and identify G6PD as a potential therapeutic target. Front Oncol 2025; 15:1553722. [PMID: 40201344 PMCID: PMC11975570 DOI: 10.3389/fonc.2025.1553722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Background Glucose metabolism reprogramming provides significant insights into the development and progression of malignant tumors. This study aims to explore the temporal-spatial evolution of the glucose metabolism in HCC using single-cell sequencing and spatial transcriptomics (ST), and validates G6PD as a potential therapeutic target for HCC. Methods We collected single-cell sequencing data from 7 HCC and adjacent non-cancerous tissues from the GSE149614 database, and ST data from 4 HCC tissues from the HRA000437 database. Pseudotime analysis was performed on the single-cell data, while ST data was used to analyze spatial metabolic activity. High-throughput sequencing and experiments, including wound healing, CCK-8, and transwell assays, were conducted to validate the role and regulatory mechanisms of G6PD in HCC. Results Our study identified a progressive upregulation of PPP-related genes during tumorigenesis. ST analysis revealed elevated PPP metabolic scores in the central and intermediate tumor regions compared to the peripheral zones. High-throughput sequencing and experimental validation further suggested that G6PD-mediated regulation of HCC cell proliferation, migration, and invasion is likely associated with glutathione metabolism and ROS production. Finally, Cox regression analysis cofirmed G6PD as an independent prognostic factor for overall survival in HCC patients. Conclusion Our study provides novel insights into the changes in glucose metabolism in HCC from both temporal and spatial perspectives. We experimentally demonstrated that G6PD regulates proliferation, migration, and invasion in HCC and propose G6PD as a prognostic marker and therapeutic metabolic target for the HCC.
Collapse
Affiliation(s)
- Deyang Xi
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yinshuang Yang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Guo
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengjiao Wang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuebing Yan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyang Li
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Ali A, Motaleb A, Alam MT, Pandey DK, Shafiullah. Synthesis and Pharmacological Properties of Modified A- and D-Ring in Dehydroepiandrosterone (DHEA): A Review. ACS OMEGA 2024; 9:32287-32327. [PMID: 39100307 PMCID: PMC11292635 DOI: 10.1021/acsomega.4c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Dehydroepiandrosterone (3β-hydroxyandrost-5-en-17-one) (DHEA) is a naturally occurring steroid hormone primarily produced in the zona reticularis of the human adrenal glands. It serves as a crucial precursor for sex hormones, such as testosterone, estradiol, and androstenedione. Recent findings indicate that DHEA serves as the primary source of sex steroids in women during both pre- and postmenopausal stages. Additionally, a decline in DHEA levels with age is linked to various hormone-deficiency symptoms. Despite the wide array of biological activities that make DHEA a valuable polycyclic natural steroid, particularly for pharmaceutical and cosmetic applications, reports suggest that oral DHEA has limited clinical effect. Thus, A- and D-ring modified DHEA are synthesized and their biological activities are carried out by different research groups and enhanced biological activity reported in the literature. Here, in this review, we have tried to cover all of the synthetic routes and biological studies of modified A- and D-ring DHEA from 2015 to mid-2022.
Collapse
Affiliation(s)
- Abad Ali
- Department
of Chemistry, Faculty of Science, Aligarh
Muslim University, Aligarh, Uttar Pradesh 202 002, India
| | - Abdul Motaleb
- Department
of Chemistry, Midnapore College (Autonomous), Vidyasagar University, Midnapore
City 721101, India
| | - Md. Tauqir Alam
- Department
of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh 202 002, India
| | - Dilip Kumar Pandey
- Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha,
Onna, Okinawa 904-0495, Japan
| | - Shafiullah
- Department
of Chemistry, Faculty of Science, Aligarh
Muslim University, Aligarh, Uttar Pradesh 202 002, India
| |
Collapse
|
3
|
Zhao W, Zheng XD, Tang PYZ, Li HM, Liu X, Zhong JJ, Tang YJ. Advances of antitumor drug discovery in traditional Chinese medicine and natural active products by using multi-active components combination. Med Res Rev 2023; 43:1778-1808. [PMID: 37183170 DOI: 10.1002/med.21963] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
The antitumor efficacy of Chinese herbal medicines has been widely recognized. Leading compounds such as sterols, glycosides, flavonoids, alkaloids, terpenoids, phenylpropanoids, and polyketides constitute their complex active components. The antitumor monomers derived from Chinese medicine possess an attractive anticancer activity. However, their use was limited by low bioavailability, significant toxicity, and side effects, hindering their clinical applications. Recently, new chemical entities have been designed and synthesized by combining natural drugs with other small drug molecules or active moieties to improve the antitumor activity and selectivity, and reduce side effects. Such a novel conjugated drug that can interact with several vital biological targets in cells may have a more significant or synergistic anticancer activity than a single-molecule drug. In addition, antitumor conjugates could be obtained by combining pharmacophores containing two or more known drugs or leading compounds. Based on these studies, the new drug research and development could be greatly shortened. This study reviews the research progress of conjugates with antitumor activity based on Chinese herbal medicine. It is expected to serve as a valuable reference to antitumor drug research and clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao-Di Zheng
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | | | - Hong-Mei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xue Liu
- Jinan Intellectual Property Protection Center, Jinan, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Yang Y, Krin A, Cai X, Poopari MR, Zhang Y, Cheeseman JR, Xu Y. Conformations of Steroid Hormones: Infrared and Vibrational Circular Dichroism Spectroscopy. Molecules 2023; 28:molecules28020771. [PMID: 36677830 PMCID: PMC9864676 DOI: 10.3390/molecules28020771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Steroid hormone molecules may exhibit very different functionalities based on the associated functional groups and their 3D arrangements in space, i.e., absolute configurations and conformations. Infrared (IR) and vibrational circular dichroism (VCD) spectra of four different steroid hormones, namely dehydroepiandrosterone (DHEA), 17α-methyltestosterone (MTTT), (16α,17)-epoxyprogesterone (Epoxy-P4), and dehydroepiandrosterone acetate (AcO-DHEA), were measured in deuterated dimethyl sulfoxide and some also in carbon tetrachloride. Extensive conformational searches were carried out using the recent developed conformer-rotamer ensemble sampling tool (CREST) which also accounts for solvent effects using an implicit solvation model. All the CREST conformational candidates were then reoptimized at the B3LYP-D3BJ/def2-TZVPD with the PCM of solvent. The good agreements between the experimental IR and VCD spectra and the theoretical simulations provide a conclusive information about their conformational distribution and absolute configurations. The experimental and theoretical IR and VCD spectra of AcO-DHEA in the carbonyl and alkene stretching region showed some discrepancies, and the possible causes related to solvent effects, large amplitude motions and levels of theory used in the modelling were explored in detail. As part of the investigation, additional calculations at the B3LYP-D3BJ/6-31++G (2d,p) and B3LYP-D3BJ/cc-pVTZ levels, as well as some 'mixed' calculations with the double-hybrid functional B2PLYP-D3 were also carried out. The results indicate that the double-hybrid functional is important for predicting the correct IR band pattern in the carbonyl and alkene stretching region.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Anna Krin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Centre for Science and Peace Research (ZNF), Universität Hamburg, Bogenallee 11, 20144 Hamburg, Germany
| | - Xiaoli Cai
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | | | - Yuefei Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - James R. Cheeseman
- Gaussian Inc., 340 Quinnipiac St., Bldg., 40, Wallingford, CT 06492-4050, USA
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Correspondence: ; Tel.: +1-780-402-1244
| |
Collapse
|
5
|
Huo H, Li G, Shi B, Li J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg Med Chem 2022; 69:116882. [PMID: 35749841 DOI: 10.1016/j.bmc.2022.116882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Steroids modification for improving their biological activities is one of the most efficient and fruitful methods to develop novel medicines. Steroids with aza-heterocycles attaching to the C-17 owing various biological activities have received great attentions and some of the compounds are developed successfully as drugs. In this review, the research of the syntheses and biological activities of steroids bearing various aza-heterocycles published in the last 8 years is assembled, and some important structure-activity relationships (SARs) of active compounds are presented. According to the analysis of the literatures and our experiences in this field, the potential of aza-heterocyclic steroids as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi 046011, Shanxi, China.
| |
Collapse
|
6
|
Molecular-docking-guided design, palladium-catalyzed synthesis and anticancer activity of paclitaxel-benzoxazoles hybrids. Sci Rep 2022; 12:10021. [PMID: 35705688 PMCID: PMC9200075 DOI: 10.1038/s41598-022-14172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
A series of new paclitaxel-benzoxazoles hybrids were designed based on both the molecular docking mode of beta-tubulin with paclitaxel derivatives (7a and 7g), and the activity-structure relationship of C-13 side chain in paclitaxel. Palladium-catalyzed direct Csp2–H arylation of benzoxazoles with different aryl-bromides was used as the key synthetic strategy for the aryl-benzoxazoles moieties in the hybrids. Twenty-six newly synthesized hybrids were screened for their antiproliferative activity against human cancer cell lines such as human breast cancer cells (MDA-MB-231) and liver hepatocellular cells (HepG2) by the MTT assay and results were compared with paclitaxel. Interestingly, most hybrids (7a–7e, 7i, 7k, 7l, 7A, 7B, 7D and 7E) showed significantly active against both cell lines at concentration of 50 µM, which indicated that the hybrid strategy is effective to get structural simplified paclitaxel analogues with high anti-tumor activity.
Collapse
|