1
|
Samanta R, Haldar N, Pamecha A, Gajbhiye V. Cell membrane-camouflaged nanocarriers: A cutting-edge biomimetic technology to develop cancer immunotherapy. Int J Pharm 2025; 672:125336. [PMID: 39947362 DOI: 10.1016/j.ijpharm.2025.125336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The development and growth of many diseases are significantly influenced by immune dysregulation. Similarly, uncontrolled tumor growth occurs in cancer because the immune system is unable to identify and eradicate cancer cells. Therefore, to address this issue, cancer immunotherapy plays a crucial role in detecting tumors and inhibiting their growth. This immune-oncotherapy has gained significant interest over the last decade because of its relevant success in biomedical applications. The fundamental goal of immunotherapy in the war against cancer is to develop potent immunotherapies that have minimal side effects and excellent tumor selectivity. To develop these characteristics, nanotechnology offered promising opportunities for cancer immunotherapy. Cell membrane-coated nanoparticles (CMNPs) have recently evolved, which has a tremendous advantage over other nanoparticles (NPs). The CMNPs can be formed by wrapping cell membranes, which can camouflage the specific cell type, allowing these NPs to survive like "self" during blood circulation and escape immune cell capture. These provide NPs with increased biocompatibility, minimal immunogenicity, longer circulation, and targeted tumor therapy. These advantages have made CMNPs a potential delivery vehicle for immunostimulatory drugs, which can induce immunological responses and lead to cancer immunotherapy. Surface modification of CMNPs using cutting-edge genetic engineering techniques revolutionizes cancer immunotherapy to produce new nano-formulations with greater effectiveness. In this review, we briefly discuss the relationship between cancer and the immune system, various techniques of CMNPs synthesis, and the use of naturally occurring and genetically modified CMNPs for cancer immunotherapy.
Collapse
Affiliation(s)
- Rajkumar Samanta
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007 India
| | - Niladri Haldar
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007 India
| | - Anchal Pamecha
- Place of Work, Nanobioscience Group, Agharkar Research Institute, Pune 411004 India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007 India.
| |
Collapse
|
2
|
Pikwong F, Kamsarn J, Jarisarapurin W, Baipaywad P, Park H, Kumphune S. Cardiac Cell Membrane-Coated Nanoparticles as a Potential Targeted Delivery System for Cardiac Therapy. Biomimetics (Basel) 2025; 10:141. [PMID: 40136795 PMCID: PMC11940174 DOI: 10.3390/biomimetics10030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Cardiomyopathies, a cause of heart failure, are a predominant cause of death globally and may lead to discernible myocardial abnormalities. Several therapeutic agents were discovered, developed, investigated, and evaluated to save patients' lives and improve their quality of life. The effective administration of drugs improves therapeutic outcomes while reducing side effects. Nanoparticles (NPs) have been utilised for the delivery of therapeutic agents and demonstrate promise in reducing myocardial ischaemia/reperfusion injury. However, significant limitations of NPs include non-specific targeting and immunogenicity. To improve cardiac targeting and biocompatibility, surface modifications using a cardiac cell membrane (cCM) coating on the surface of NPs have been hypothesised. Here, cCMs were isolated from the human ventricular cell line (AC16), and mesoporous silica nanoparticles (MSNs) were synthesised and then coated with cCMs. The cardiac cell membrane-coated mesoporous silica nanoparticles (cCMCMSNs) did not significantly alter the encapsulation efficiency or the release profile of the loaded drug (Rhodamine B) in comparison to MSN. Moreover, cCMCMSNs demonstrated a significantly enhanced distribution of RhB specifically to cardiac cells, compared to other cell types, without causing cytotoxicity. To evaluate immune escape, cCMCMSNs were exposed to activated macrophages, demonstrating that cCMCMSNs were phagocytosed to a lesser extent than MSN. This study demonstrated the synthesis of cardiac cell membranes coated on the surface of nanoparticles as nanomedicine technologies that enhance selective drug delivery to cardiac cells, potentially offering an alternate method for drug administration in cardiovascular diseases.
Collapse
Affiliation(s)
- Faprathan Pikwong
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (F.P.); (J.K.); (W.J.); (P.B.)
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
| | - Jiraporn Kamsarn
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (F.P.); (J.K.); (W.J.); (P.B.)
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
| | - Wattanased Jarisarapurin
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (F.P.); (J.K.); (W.J.); (P.B.)
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (F.P.); (J.K.); (W.J.); (P.B.)
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Sarawut Kumphune
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (F.P.); (J.K.); (W.J.); (P.B.)
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Guo J, Liu Y, Liang X, Chen Z, Liu B, Yuan Z. 4T1 Cell Membrane-Coated Pdots with NIR-II Absorption and Fluorescence Properties for Targeted Phototheranostics of Breast Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66425-66435. [PMID: 39569810 PMCID: PMC11622192 DOI: 10.1021/acsami.4c12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Designing highly biocompatible organic semiconducting conjugated polymer dots (Pdots) with bright fluorescence and superior absorption properties in the second near-infrared window (NIR-II: 1000-1700 nm) remains a huge challenge for tumor phototheranostics. In this study, we constructed 4T1 cell membrane-coated m-PBTQ4F Pdots (CPdots) with enhanced NIR-II photoacoustic (PA) and fluorescence (FL) imaging capability for NIR-II photothermal therapy (PTT) of breast tumors. Our findings demonstrated that CPdots could specifically target breast tumors, leading to enhanced tumor accumulation after systemic administration in living mice. In addition, CPdots can not only serve as contrast agents for NIR-II PA and FL imaging for improved breast tumor detection but also generate more cytotoxic heat to improve PTT efficacy. Therefore, this pilot study opens an option avenue for developing new NIR-II Pdots with homologous targeting capability for enhanced phototheranostics of breast tumors.
Collapse
Affiliation(s)
- Jintong Guo
- Faculty
of Health Sciences, University of Macau, Macau SAR 99999, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Macau SAR 99999, China
| | - Ye Liu
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiao Liang
- Faculty
of Health Sciences, University of Macau, Macau SAR 99999, China
| | - Zhiyi Chen
- Key
Laboratory of Medical Imaging Precision Theranostics and Radiation
Protection, College of Hunan Province, The Affiliated Changsha Central
Hospital, Hengyang Medical School, University
of South China, Changsha, Hunan 410004, China
- Institute
of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bin Liu
- Zhujiang
Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhen Yuan
- Faculty
of Health Sciences, University of Macau, Macau SAR 99999, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Macau SAR 99999, China
| |
Collapse
|
4
|
Jin X, Lopes D, Lopes J, Hua Z, Lei Y, Ghanbari R, Nazarzadeh Zare E, Borzacchiello A, Karimi Male H, Iravani S, Sillanpää M, Prakash C, Wang X, Cláudia Paiva-Santos A, Makvandi P, Xu Y. Bioengineered Abiotic Nanomaterials Through Cell Membrane-Camouflaging: Advancements and Challenges in Lung Cancer. Adv Healthc Mater 2024; 13:e2401525. [PMID: 38978444 DOI: 10.1002/adhm.202401525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Lung cancer remains a major global health concern with high mortality rates and poor prognosis. Bridging the gap between the chemical and cellular understanding of cell-decorated biomimetic nanocomposites and their clinical translation is crucial for developing effective therapies. Nanocomposites show promise in targeted drug delivery and diagnostics, but their clinical application is hindered by biocompatibility and clearance issues. To overcome these challenges, biomimetic approaches utilizing cell membrane-coated nanomaterials emerge. By camouflaging nanomaterials with cell membranes, the biointerfaces are enhanced, and the inherent properties of the donor cell membranes are acquired. This review provides an overview of recent advancements on cell membrane-coated nanocomposites for lung cancer diagnosis and treatment. It discusses fabrication techniques, biomedical applications, challenges, and future prospects. The incorporation of cell membranes into nanocomposites holds potential for improved lung cancer therapy, but further development and refinement are needed for precise tumor targeting. Addressing the identified challenges will pave the way for clinical translation of these biomimetic nanoplatforms and advance lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xuru Jin
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Zhidan Hua
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Ying Lei
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Roham Ghanbari
- School of Chemistry, College of Science, University of Tehran, Tehran, 14174-66191, Iran
| | | | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Hassan Karimi Male
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, 610054, P. R. China
- Department of chemical engineering, Quchan university of Technology, Quchan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait, 32093, Kuwait
- Adnan Kassar School of Business, Lebanese American University, Beirut, 03797751, Lebanon
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
5
|
Nicolae CL, Pîrvulescu DC, Antohi AM, Niculescu AG, Grumezescu AM, Croitoru GA. Silica nanoparticles in medicine: overcoming pathologies through advanced drug delivery, diagnostics, and therapeutic strategies. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:173-184. [PMID: 39020531 PMCID: PMC11384868 DOI: 10.47162/rjme.65.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Over the last decades, silica nanoparticles (SiNPs) have been studied for their applications in biomedicine as an alternative used for conventional diagnostics and treatments. Since their properties can be modified and adjusted for the desired use, they have many different potential applications in medicine: they can be used in diagnosis because of their ability to be loaded with dyes and their increased selectivity and sensitivity, which can improve the quality of the diagnostic process. SiNPs can be functionalized by targeting ligands or molecules to detect certain cellular processes or biomarkers with better precision. Targeted delivery is another fundamental use of SiNPs. They could be used as drug delivery systems (DDS) since their structure allows the loading of therapeutic agents or other compounds, and studies have demonstrated their biocompatibility. When SiNPs are used as DDS, the drug's toxicity and the off-target effects are reduced significantly, and they can be used to treat conditions like cancer and neurological diseases and even aid in regenerative processes, such as wound healing or bone repair. However, safety concerns must be considered before SiNPs can be used extensively in clinical practice because NPs can cause toxicity in certain conditions and accumulate at undesired locations. Therefore, an overview of the potential applications that SiNPs could have in medicine, as well as their safety concerns, will be covered in this review paper.
Collapse
Affiliation(s)
- Carmen Larisa Nicolae
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
6
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
7
|
Motiei M, Mišík O, Truong TH, Lizal F, Humpolíček P, Sedlařík V, Sáha P. Engineering of inhalable nano-in-microparticles for co-delivery of small molecules and miRNAs. DISCOVER NANO 2023; 18:38. [PMID: 37382704 DOI: 10.1186/s11671-023-03781-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/27/2023] [Indexed: 06/30/2023]
Abstract
In this study, novel Trojan particles were engineered for direct delivery of doxorubicin (DOX) and miR-34a as model drugs to the lungs to raise local drug concentration, decrease pulmonary clearance, increase lung drug deposition, reduce systemic side effects, and overcome multi-drug resistance. For this purpose, targeted polyelectrolyte nanoparticles (tPENs) developed with layer-by-layer polymers (i.e., chitosan, dextran sulfate, and mannose-g-polyethyleneimine) were spray dried into a multiple-excipient (i.e., chitosan, leucine, and mannitol). The resulting nanoparticles were first characterized in terms of size, morphology, in vitro DOX release, cellular internalization, and in vitro cytotoxicity. tPENs showed comparable cellular uptake levels to PENs in A549 cells and no significant cytotoxicity on their metabolic activity. Co-loaded DOX/miR-34a showed a greater cytotoxicity effect than DOX-loaded tPENs and free drugs, which was confirmed by Actin staining. Thereafter, nano-in-microparticles were studied through size, morphology, aerosolization efficiency, residual moisture content, and in vitro DOX release. It was demonstrated that tPENs were successfully incorporated into microspheres with adequate emitted dose and fine particle fraction but low mass median aerodynamic diameter for deposition into the deep lung. The dry powder formulations also demonstrated a sustained DOX release at both pH values of 6.8 and 7.4.
Collapse
Affiliation(s)
- Marjan Motiei
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic.
| | - Ondrej Mišík
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669, Brno, Czech Republic
| | - Thanh Huong Truong
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic
| | - Frantisek Lizal
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669, Brno, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic
| | - Vladimír Sedlařík
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic
| |
Collapse
|
8
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
9
|
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res 2023; 13:189-221. [PMID: 36074253 DOI: 10.1007/s13346-022-01211-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash DehghanKhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Farahavar
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India. .,Department of Biotechnology, Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Hameed S, Bhattarai P, Gong Z, Liang X, Yue X, Dai Z. Ultrasmall porphyrin-silica core-shell dots for enhanced fluorescence imaging-guided cancer photodynamic therapy. NANOSCALE ADVANCES 2022; 5:277-289. [PMID: 36605795 PMCID: PMC9765644 DOI: 10.1039/d2na00704e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Clinically used small-molecular photosensitizers (PSs) for photodynamic therapy (PDT) share similar disadvantages, such as the lack of selectivity towards cancer cells, short blood circulation time, life-threatening phototoxicity, and low physiological solubility. To overcome such limitations, the present study capitalizes on the synthesis of ultra-small hydrophilic porphyrin-based silica nanoparticles (core-shell porphyrin-silica dots; PSDs) to enhance the treatment outcomes of cancer via PDT. These ultra-small PSDs, with a hydrodynamic diameter less than 7 nm, have an excellent aqueous solubility in water (porphyrin; TPPS3-NH2) and enhanced tumor accumulation therefore exhibiting enhanced fluorescence imaging-guided PDT in breast cancer cells. Besides ultra-small size, such PSDs also displayed an excellent biocompatibility and negligible dark cytotoxicity in vitro. Moreover, PSDs were also found to be stable in other physiological solutions as a function of time. The fluorescence imaging of porphyrin revealed a prolonged residence time of PSDs in tumor regions, reduced accumulation in vital organs, and rapid renal clearance upon intravenous injection. The in vivo study further revealed reduced tumor growth in 4T1 tumor-bearing bulb mice after laser irradiation explaining the excellent photodynamic therapeutic efficacy of ultra-small PSDs. Thus, ultrasmall hydrophilic PSDs combined with excellent imaging-guided therapeutic abilities and renal clearance behavior represent a promising platform for cancer imaging and therapy.
Collapse
Affiliation(s)
- Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab Lahore 54000 Pakistan
| | - Pravin Bhattarai
- CÚRAM-SFI Research Centre for Medical Devices, Biomedical Sciences, University of Galway Ireland
| | - Zhuoran Gong
- Department of Biomedical Engineering, College of Future Technology, Peking University Beijing 100871 China
| | - Xiaolong Liang
- Department of Ultrasonography, Peking University Third Hospital Beijing 100191 China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology Harbin 150001 China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University Beijing 100871 China
| |
Collapse
|
11
|
|
12
|
Cao Y, Yang Y, Feng S, Wan Y. Biomimetic cancer cell-coated albumin nanoparticles for enhanced colloidal stability and homotypic targeting of breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Zhao Y, Li A, Jiang L, Gu Y, Liu J. Hybrid Membrane-Coated Biomimetic Nanoparticles (HM@BNPs): A Multifunctional Nanomaterial for Biomedical Applications. Biomacromolecules 2021; 22:3149-3167. [PMID: 34225451 DOI: 10.1021/acs.biomac.1c00440] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of nanoparticles in the diagnosis and treatment of diseases has undergone different developmental stages, but phagocytosis and nonspecific distribution have been the main factors restricting the transformation of nanobased drugs into clinical practice. In the past decade, the design of membrane-coated nanoparticles has gained increasing attention. It is hoped that the combination of the cell membrane's natural biological properties and the functional integration of synthetic nanoparticle systems can compensate for the shortage of traditional nanoparticles. The membrane coating gives the nanoparticles unique biological functions such as immune evasion and targeting capability. However, when the encapsulation of monotypic membranes does not meet the diverse demands of biomedicine, the combination of different cell membranes may offer more possibilities. In this review, the composition, preparation, and advantages of biomimetic nanoparticles coated with hybrid cell membranes are summarized, and the applications of hybrid membrane-coated biomimetic nanoparticles (HM@BNPs) in drug delivery, phototherapy, liquid biopsy, tumor vaccines, immune therapy, and detoxification are reviewed. Finally, the current challenges and opportunities with regard to HM@BNPs are discussed.
Collapse
Affiliation(s)
- Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Aixue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Liangdi Jiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|